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Abstract—Recently, the industry has shown a growing interest
for executing activities with different levels of criticality on
the same platform, aiming at reducing the time-to-market and
the recurrent hardware costs. In this context, we illustrate
the results achieved by the three-year HERCULES project for
building a high-performance real-time architecture using modern
low-power ARM platforms. In particular, we present a system
consisting of both the Linux OS and an automotive RTOS on
top of an open-source hypervisor. Besides presenting the overall
software architecture, we highlight the issues related to the
interference on shared hardware resources, illustrating some
techniques specifically designed for mitigating or preventing such
problems. Finally, we provide some experimental results about
the effectiveness of the proposed approach.

Keywords—AUTOSAR, embedded, hypervisor, Linux, multi-
core, RTOS.

I. INTRODUCTION

During the recent years, the industry has shown a growing
interest for running activities with different levels of criticality
on the same platform. These could consist, for example,
of non-critical activities (e.g., monitoring, logging, human-
machine interface, multimedia, data backup) together with
safety-critical real-time tasks. The rationale behind this interest
is the continuous need for reducing the time-to-market as well
as the recurrent hardware costs. This is particularly suitable
for the automotive market, where new infotainment and dash-
board functionalities might be coupled with traditional (e.g.,
engine/brake control) or innovative (e.g., assisted/autonomous
driving) safety-critical tasks.

Linux is a full-featured operating system (OS), originally
designed to be used in server or desktop environments. Since
then, Linux has evolved and grown to be used in almost all
computer areas, including embedded devices. Thanks to its
high modularity and scalability, in fact, Linux can run on either
a small microcontroller or a supercomputer. Unfortunately,
the standard mainline Linux kernel is not suitable for being
used as an RTOS because it has been designed to be general-
purpose. The main design goal has in fact concerned the
optimization of the average throughput rather than meeting the
timing constraints of each running application. As a result,
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the standard Linux kernel does not provide good real-time
performance.

In the course of the years, several open-source projects have
aimed at creating a real-time version of the Linux operating
system. The dual-kernel approach proposed by some projects,
for example, creates a Hardware Abstraction Layer (HAL) and
modifies the interrupt handling routines for executing a tiny
RTOS prior than Linux ([1], [2], [3]). The Linux kernel and
its tasks are thus executed at a priority lower than the real-
time tasks. Despite these projects have successfully proven the
feasibility of the proposed approach, they have been unable of
getting enough traction and visibility to become widespread.
A more popular project, PREEMPT_RT [4] aims at reducing
the maximum latencies experienced by a real-time task on
the mainline Linux. Unfortunately, all these projects present
issues for the certification needed in some industrial domains
(e.g., automotive, avionics, medical): the huge code size of the
Linux kernel, in fact, discourages, or even prevents, a proper
certification of the system.

Aiming at a potential certification of the safety-critical part
of the software stack, the HERCULES project has therefore
taken a different approach: run a certified RTOS on top of
a tiny hypervisor with a reasonable code size; then, use the
hypervisor for running also a general-purpose OS (i.e., Linux);
finally, use the latest research results on predictable execution
in order to achieve better predictability on COTS multicore
hardware.

II. THE HERCULES ARCHITECTURE

Figure 1 illustrates the overall architecture of the HER-
CULES software stack. The next paragraphs will describe the
most important components.

A. Hypervisor

A hypervisor is a (software or hardware) component for
running multiple virtual machines on the same platform.
Depending on the specific scenario, these virtual machines
can either contain an operating system or run bare-metal
applications.

Historically, hypervisors have been classified as either:
• Type 1: native (or bare-metal) hypervisors, directly run-

ning on hardware.



Fig. 1. The HERCULES software architecture

• Type 2: hosted hypervisors, running on a conventional
“host” operating system.

A further classification depends on the API exposed to the
guests:

• In case of full virtualization, the guest OS is not aware of
virtualization, as it uses the same API used when running
on the bare-metal platform.

• In case of paravirtualization, instead, the guest OS must
use a different API, designed for easing certain operations
or improving performance.

Jailhouse [5] is a young project aiming at creating a small
and lightweight hypervisor for industrial-grade applications.
The hypervisor is developed by Siemens but released as open-
source software under a mix of GPL and BSD licensing. Like
some other novel hypervisors, Jailhouse is not type-1 nor type-
2, as it is hosted by the Linux OS, but converts it to a type-1
hypervisor.

To pave the way to a potential certification in safety-critical
contexts, the code is kept to a minimum. For this reason,
the hypervisor does not implement paravirtualization and
partitions the hardware resources among the different guests,
without adding emulation or scheduling. A core cannot thus
be shared among different guests; moreover, the hypervisor
cannot run unmodified OSs (like Windows or VxWorks).

In HERCULES we have used Jailhouse for running an
RTOS alongside the Linux OS. This way, we have been able
of executing real-time safety-critical control applications and
general-purpose non-critical tasks concurrently on the same
platform.

To maximize performance and reduce the code size, Jail-
house leverages hardware-assisted virtualization available in
the instruction set of the latest x86-64 and ARM Cortex-A
architectures. In particular, the software stack of HERCULES
has been ported onto the following hardware platforms:

• Nvidia Jetson TX2 [6], including a quad-core ARM
Cortex-A57, a dual-core Denver2, three Cortex-R5 and
a Nvidia Pascal GPGPU.

• Xilinx ZCU102 [7], including a quad-core ARM Cortex-
A53, a dual-core ARM Cortex-R5, an FPGA fabric and
a Mali-400 GPGPU.

B. ERIKA Enterprise RTOS
ERIKA Enterprise [8] is an RTOS specifically designed for

automotive Electronic Control Units (ECUs). It is based on
the OSEK/VDX and AUTOSAR standards, with an on-going
ISO26262 certification process. It already supports several
hardware architectures, including ARM Cortex-M/R/A, Infi-
neon Tricore AURIX TC2xx/TC3xx and x86-64.

The RTOS, which has minimal footprint (i.e. a few KBs)
and multi-core support, is already used by renowned com-
panies operating in the automotive and household appliances
markets as well as by several international research projects.
The source code is provided under dual licensing: an open-
source GPL license, plus an optional linking exception fee for
industrial products.

In HERCULES, the ERIKA RTOS has been ported on top of
the Jailhouse hypervisor for the reference platforms illustrated
above. ERIKA has been then used for running the real-time
tasks with tight timing requirements of an autonomous driving
use-case.

C. Inter-guest communication
Jailhouse provides a sophisticated mechanism for sharing

information between different guests. The mechanism is based
on the ivshmem model of the Qemu emulator [9]. In HER-
CULES, we borrowed a library developed in the context of
the RETINA EUROSTARS project [10]. This library, built on
top of Jailhouse’s mechanism, provides an API based on the
AUTOSAR COM standard [11], easing the development of
the applications and the integration with other components.

In particular, the library has been integrated with an AU-
TOSAR Run-Time Environment (RTE) generator for ERIKA
Enterprise. This RTE Generator, developed in the HERCULES
project, runs on Eclipse and it is based on the Acceleo [12]
and ARTop [13] technologies.

D. Linux OS
Although safety-critical activities are handled by the ERIKA

Enterprise RTOS, nevertheless we have improved the standard
Linux kernel for having better timing performance. The first
step has been the integration of the PREEMPT_RT patch [4].
Then, we have improved the SCHED_DEADLINE scheduler
[14]. SCHED_DEADLINE is a real-time CPU scheduler avail-
able by default in any standard Linux kernel since release
3.14. Unlike other CPU schedulers, it allows to specify the
amount of CPU time reserved to a real-time task with a per-
task timing granularity. In the context of HERCULES, we have
improved the SCHED_DEADLINE policy by adding two new
features [15]:

• The possibility for a real-time task to reclaim the CPU
bandwidth unused by other real-time tasks.

• The integration with ARM’s CPU frequency scaling
mechanism for reducing the energy consumption when-
ever the real-time tasks do not fully utilize the CPU.



Both features, deeply described in [15], have been integrated
into the official Linux kernel since releases 4.13 and 4.16,
respectively.

III. PREDICTABILITY IN MEMORY HIERARCHIES

A. Introduction

a) Memory hierarchy contention: The most prominent
architectural weaknesses menacing predictable performance
of the latest multi-core system-on-chip platforms, such as
the HERCULES duo (NVIDIA TX2 and Xilinx ZCU102), are
located in the memory hierarchy. Firstly, many components
are shared — the number of cores and accelerators grows
linearly with the degree of contention they generate on the
memory controller and on the large Last Level Cache (LLC)
subsystems. Secondly, hardware support to isolation is missing
— last-level caches, although getting larger and deeper every
year, lack support for explicit locking, or partitioning; DRAM
controllers, on the other hand, are not equipped with any
expensive programmability features. As a consequence, the
system contention is left free to grow, and so is the detriment
to the worst-case performance of real-time tasks.

b) Hypervised memory management: In HERCULES, we
thus identified three specific issues, and solved them at a
software level by implementing real-time extensions to the
Jailhouse hypervisor. The solution enjoys simplicity, reduced
overhead, programmability, and compatibility to legacy sys-
tems.

1) Contention to cluster-shared last-level cache is prevented
by the cache colouring support, which partitions LLC
for host OSs or bare metal applications by leveraging
ARMv8 virtual extensions to properly setup address
translation tables.

2) Self-eviction of useful lines in caches with pseudo-
random replacement is avoided by invalidation-driven
allocation, which consists, before fetching a number of
new data, in simply marking as invalid a corresponding
number of cache location, which are then deterministi-
cally selected for eviction.

3) Contention to shared RAM is tamed by enforcing the
Predictable Execution Model (PREM), which imposes
to different hosted OSs or bare metal applications ex-
clusive, thus high-speed and high-predictable, access to
the central memory. When this is hardly applicable, we
apply also MemGuarding, which limits the available
bandwidth to a given hypervisor host.

The first two key techniques are the state-of-the-art [16],
[17] technologies, whose industrial application has been al-
ready successfully tested on ZCU102 [18]. The comprehen-
sive approach is validated against empirical evidence whose
configuration is presented in the very next subsection. Such
setup will be first to highlight the contention problem, and
then to gradually introduce the different key ingredients that
compose the HERCULES solution.

B. Experimental Setup

We selected two task applications, a real-world example and
an optimal corner-case.

• GEMM. Generalised Matrix Multiplication, as imple-
mented in the PolyBench suite v4.2 [19].

• Synth. A naive implementation of the function which,
given a 4 MiB array A of 64 B data (i.e. a cache line —
the atomic cache entity), it computes a+ |A|2, where |A|
is the length of A, for each a ∈ A, by iterated unitary
incrementation over the whole length of A.

The applications are implemented as ERIKA tasks, to be
independently run as a Jailhouse host. The host is allocated
on the first (i.e. 0) A57 core of the TX2 platform, whose core
complex is equipped with a 2 MiB level 2 cache.

C. Interference

To understand how dramatic the impact of memory inter-
ference can be, we have run the memory read latency micro-
benchmark (lat_mem_rd) of the LMBench suite [20]. We
have compared its isolated execution, both with sequential and
random access pattern, with the interference setup where:

• 4 bare-metal applications stress the whole memory hier-
archy by incessantly memcpy-ing a 4 MiB array each;

• 1 minimal Linux OS, hosting a similar application, which
in addition also repeatedly spawns a CUDA memSet
kernel, adding further load the SDRAM subsystem.

Results are plotted in the leftmost column of Figure 2 and are
coherent with lat_mem_rd.

Figure 3 shows how the memory read access time grows
with respect to the total depth. Under the level 1 data cache
size (32 KiB on A57, 64 KiB on Denver cores), latency is
stable under interference, since the cache is dedicated to the
core. Over the level 2 size (2 MiB), instead, the slowdown is
around 5-10x, because the whole hierarchy is under contention
and every component is near to congestion. In between, the
variation varies with the depth growth, although not always
linearly.

D. Cache Colouring

Page colouring is a software technique that implements
cache partitioning by exploiting disjointness traits of the cache
mapping function, the one that associates a cache line to any
given memory address. Whilst in general it requires manual
implementation at application- or OS-level, we propose an
almost transparent hypervisor support. The benefits are easily
appreciable on the execution time for both GEMM and Synth
— we configured a variation of the experiment configuration
where a 512 KiB cache partition is dedicated to the core under
test), and to each other A57 running interference. Results in the
leftmost plot column of Figure 3 show that the cache limitation
caused by colouring is usually negligible (as in GEMM), and
that cache partitioning is effective when the application heavily
exploits it (not as in Synth).
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Fig. 2. Memory read latency micro-benchmark results (logscale).

E. PRedictable Execution Model

The PRedictable Execution Model (PREM) [21] approach
forces real-time tasks to be structured alternating two kind of
operating modes named intervals:

• Computation: Execution performs no access to cen-
tral DRAM, hence relying on dedicated caches (e.g.
coloured).

• Memory: Cache writeback to DRAM is operated, fol-
lowed by a cache prefetch for the next computation phase.

The key point is that memory phases of different tasks running
on a multi-core system are required to never overlap, to
eliminate any competition in DRAM access that would cause
the bandwidth to be shared. The problem of contention on
DRAM, is thus reduced to the synchronisation between tasks
willing to start a memory interval.

We extended Jailhouse with a memex (memory mutex), so
that such transition is subject to having acquired the memex,
like a ‘lock’ operation. Conversely, the transition from the
memory to the computation interval unlocks the memex for
other tasks. Moreover, HERCULES project partners have built
an optimiser plugin for the LLVM compiler [22] enabling
reasonably simple C/C++ programs to be transformed so to
achieve PREM-compliance, wherever possible (an alternative
approach is discussed in next subsection). We exposed the

Jailhouse PREM API through the OS up to application level,
so that the compiler is able to insert the appropriate memex
(un-)lock calls.

We repeated the previous experiments this time using:
the automatically PREM-optimised version of GEMM, and
a manually PREM-ised version of Synth. We observe (see
central column of fig. 3) significant improvement (2x speedup
on average) in the optimistic setup of Synth, and a negligible
variation to GEMM.

Also the interference applications are replaced by a PREM-
compliant variant, where the length of the memcpy invoca-
tions is limited to 512 KiB, i.e. the available cache partition.
We see that this significantly reduces the memory interference
impact on Synth, but it degrades GEMM performance because
the lock acquisition delay may be greater than the unrestricted
effect of memory stress (fig. 3).

F. MemGuard

PREM intervals require non-preemptible execution and for-
bid foreign calls, e.g. syscalls. Moreover, memory operations
within a given program may not be reordered and grouped in
a sufficiently large sequence that would justify the overhead
caused by synchronisation. For the sake of flexibility, we
propose a PREM relaxation by allowing a third kind of
interval without the strict dichotomy between memory and
computation. We call compatible such an interval.

A compatible interval is either memexed, as memory in-
tervals are, or is protected by MemGuard [23], a software
technique developed within HERCULES which limits the mem-
ory bandwidth attainable by a core in compatibility mode. A
periodic interrupt service routine is executed to grant memory
usage budget, i.e. an allowance of L2 cache miss, to hypervisor
hosts. If an host exhausts its budget, then its CPU cores are
throttled until the next replenishment.

We implemented a variation of the previously described
memory interference setup where A57 cores’ RAM bandwidth
is quite strictly limited to allow only 10 KiB/s with a 1 ms
refill period. Baseline-relative measured latency drops down
slightly over 1.5x slowdown fig. 3, considerably better than
the unrestricted version.

G. Integrated Results

We are now ready to combine the separately-introduced
ingredients, and show the effectiveness of the integrated HER-
CULES platform. The rightmost boxplots column of Figure 3
collects results intermediate and aggregate configurations com-
bine colouring with PREM, MemGuard and/or the different
kind of interference. The HERCULES framework enable sys-
tem isolation — memory interference overhead is tamed so to
produce less than 0.3x overhead in almost all the cases.

IV. CONCLUSIONS

We have presented the HERCULES software architecture,
that allows to meet industry’s mixed-criticality needs using
novel ARM multi-core platforms. The architecture partic-
ularly targets automotive applications, running the ERIKA
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AUTOSAR RTOS alongside the Linux OS. An RTE generator
allows real-time communications between the two operating
systems. Finally, a set of tests have shown the effectiveness
of the proposed approaches for reducing (or avoiding) the
interference on shared hardware resources.
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