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Abstract

The problem of reducing energy consumption is domi-
nating the design and the implementation of embedded real-
time systems. For this reason, a new generation of proces-
sors allow to vary the voltage and the operating frequency
to balance computational speed versus energy consump-
tion. The policies that can exploit this feature are called
Dynamic Voltage Scheduling (DVS).

In real-time systems, the DVS technique must also pro-
vide the worst-case computational requirement. However, it
is well known that the probability of a task executing for the
longest possible time is very low. Hence, DVS policies can
exploit probabilistic information about the execution times
of tasks to reduce the energy consumed by the processor.

In this paper we provide the foundations to integrate
probabilistic timing analysis with energy minimization tech-
niques, starting from the simple case of one task.

1 Introduction

The number of embedded systems operated by batteries
is increasing in different application domains, from PDAs
(Personal Digital Assistants) to autonomous robots, smart
phones and sensor networks. Reducing the energy con-
sumed by these systems has become a key design issue, as
they can only operate on the limited battery supply. For this
reason, a new generation of processors [9, 13, 19] allow to
dynamically vary the voltage and the operating frequency to
balance computational speed versus energy consumption.

In recent years, as the demand for computing resources
has rapidly increased, even normal workstation PCs and
servers face energy constraints. Not surprisingly, a signif-
icant portion of the consumed energy is due to the cooling
devices, which may consume up to the 50% of the total en-
ergy [11]. In addition, researchers at IBM showed that av-
erage processor use of servers is between 10% and 50% of
their peak capacity because the load depends on the time
of the day or the day of the week [4]. This suggests that a
striking energy reduction can be achieved by enriching DVS
policies with a more detailed information on the required
workload.

Recently, many DVS algorithms have been proposed
in the literature. These algorithms can be divided in two
classes: static and dynamic. Static techniques [21, 14, 17,
12, 3] are typically applied to periodic tasks, and make use
of off-line parameters, such as periods and worst-case exe-
cution cycles (WCECs), to select the appropriate processor
speed. Since the worst-case parameters may differ signif-
icantly from the actual values, these techniques save less
energy than the dynamic ones.

On the other hand, much recent research has focused on
dynamic techniques [14, 1, 22, 17, 16, 18], which take ad-
vantage of early job completion. Some studies have ob-
served that the actual execution cycles of real-world em-
bedded tasks may vary up to 80% with respect to their mea-
sured WCECs [20]. Thus, dynamic methods can exploit
information about the run-time behaviour of tasks, which
may be very far from the pessimistic assumptions required
during the design of static techniques. Dynamic algorithms
may take decisions — change the processor speed — at two
different instants:

After task completion The algorithm does not make any
assumption on task duration, and waits for task com-
pletion to know the exact execution time. Then, the
processor speed is changed based on this informa-
tion. The algorithms GRUB-PA [18], DVSST [16]
and RTDVS-Cycle Conserving [14] belong to this cat-
egory.

Before task completion The algorithm tries to foresee the
duration of the current task instance, and takes the de-
cision in advance, based on some task’s characteristics
such as the average execution time. This decision typ-
ically depends on the behaviour of previous instances
of the task. Obviously, a right prediction allows to re-
duce considerably the energy consumption. However,
when the predicted behaviour is distant from the real-
ity, some undesired side effect, such as a deadline miss
in soft real-time systems or an increase of the energy
consumed, may occur. The algorithms RTDVS-Look
Ahead [14], DVS-EDF [22] and DRA-Aggressive [1]
are based on this mechanism.

The success of the second class of methods relies on pre-
dicting correctly the task behaviour. For this reason, the use
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of a richer task information may enhance the effectiveness
of the DVS. This increased information can be provided by
the probability density function (p.d.f.) of the task execu-
tion time. Recently, the discipline of probabilistic timing
analysis has significantly advanced [5, 7], and today there
exist some tools which can provide the p.d.f. of task execu-
tion times [2].

An attempt to consider stochastic information in energy
reduction problems has been done by Gruian [8]. However,
it only addresses the case with no transition overheads and
with a specific power function.

In this paper we integrate the concept of probabilistic ex-
ecution time within the framework of energy minimization,
providing the basis of a new challenging approach. We pre-
liminary consider the case of only one task, since we believe
that it can be extended to the general case of n tasks.

2 System model

2.1 Processor model

We assume that the processor has a continuous spectrum
of operating modes. This means that the speed can continu-
ously vary between zero and some speed upper bound. We
know that in real-world architectures this hypothesis does
not ever hold. However, many significant contributions in
the literature [1, 14, 22] still assume a continuous speed be-
cause if the processor speed levels are very close each other
then this approximation is very close to reality. Obviously,
if the optimal speed is not available, it has to be approxi-
mated with the closest discrete level higher than the optimal
one. In this case, there is an increase of energy consump-
tion, called energy quantization error, that has been studied
by Saewong and Rajkumar [17].

The processor model is formalized as follows:

– the speed α can vary within [0, αmax], where αmax is
the maximum speed allowed by the processor;

– the power consumption at speed α is modelled by the
function p(α). Typically, the power function p(α)
is a polynomial [6]. However, due to the advances
of semiconductor technology, it is expected that the
power/speed relationship may change in the next fu-
ture [8]. For this reason we model this relationship by
a generic function p(α);

– the cost of mode switching is considered in terms of
both time and energy. We call o the time overhead
needed to switch between any two modes, and e the
energy required. Notice that o and e do not depend on
the modes before and after the switch.

2.2 Energy management scheme

We focus on the problem of reducing the energy con-
sumed by a task τ on a variable speed processor. Some ex-

isting power-aware algorithms have been deployed starting
from this simple scheme, since it constitutes a good starting
point for more complex analysis [22].

The task τ has period and deadline both equal to T . The
number of processor cycles required in the interval [0, T ]
is modelled by a random variable whose p.d.f. is fC(c).
The maximum possible number of cycles needed by τ is
Cmax. Since the task is hard real-time, Cmax cycles must be
available in [0, T ].

If the number of required cycles in [0, T ] was known in
advance, the best way to reduce energy consumption would
be to keep a constant speed [10, 15]. In fact, the convexity
of the power/speed curve implies that maintaining a con-
stant speed α is better than switching between two different
speeds. Unfortunately, this number of cycles is unknown in
advance, hence we cannot determine the optimal speed α.

A common technique adopted in the literature [1, 22, 14]
is based upon the idea of deferring some work, since we ex-
pect that the current instance of τ will request much less
than its WCEC Cmax. This technique splits the task execu-
tion into two parts, as shown in Figure 1. In the first part, the
task runs at a lower processor speed αL in order to reduce
the energy consumed in the average case. In the second part,
instead, a higher processor speed αH is used, so that we can
provide up to Cmax cycles even in the worst case. The idea
is that, if a task tends to use much less than its WCEC, the
second part, which consumes more power, may never be
needed. When the worst-case condition occurs, instead, the
speed increase guarantees the completion of all the deferred
work within [0, T ].

Processor
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Figure 1. The energy management scheme.

The idea of deferring work has been widely used in the
literature to create efficient power-aware algorithms. For
instance, Pillai and Shin [14] proposed the RTDVS-Look
Ahead algorithm, which tries to defer as much work as
possible, and sets the operating frequency to the minimum
value to ensure that all future deadlines will be met. This
technique has also been used by Aydin et al. in the “aggres-
sive” version of their DRA algorithm [1]. This algorithm
speculatively assumes that current and future instances of
the task will most probably present a computational demand
lower than the worst case. Hence, it tries to reduce the speed
of the running task by deferring all the work above a certain
threshold, set according to the average workload. A similar
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approach has been applied to EDF by Zhu and Mueller [22].
Each task’s instance is divided into two portions. The objec-
tive is to provide the average number of cycles Cavg within
the first portion. The second part at speed αH ensures that
the deadline is met even when the task requires Cmax cycles.

Even if these techniques have been widely used in the
literature, a probabilistic study of this model has not been
proposed, yet. For instance, all previous algorithms set the
speed αH equal to the maximum possible value, even if this
may not be optimal from the point of view of energy con-
sumption. Even worse, some technique [22] is based on the
intuitive idea that the optimal energy reduction is obtained
by providing exactly the average execution cycles in the first
part. In Section 3.1 we will prove that this intuition is not
correct.

We decide to deeply study this model, extending it to
the case in which probabilistic information about task exe-
cution time is known. Moreover, we use a general model
for the processor, accounting for both the time and energy
overheads of voltage transition.

3 Optimal speed assignment

Let αL and αH be the lower and the higher processor
speeds, respectively. The period of the scheme is T . The
number of processor cycles required by the task τ in each
period is modelled by a random variable whose p.d.f. is
fC(c), and the maximum number of cycles is Cmax. This
amount of cycles must be guaranteed in each period because
the task is subject to a hard real-time constraint.

Our goal is to find the two speed levels αL and αH and
the instant Q when to switch, in order to achieve the mini-
mum energy consumption. Let Cx be the number of cycles
provided while running at αL, as shown in Figure 1. We
can express (αL, αH ) as a function of Cx and Q as follows

αL =
Cx

Q − o
αH =

Cmax − Cx

T − Q − o
, (1)

due to the constraint of providing Cmax cycles within each
period T .

Let also be c the number of cycles that actually occur and
f the finishing time . We distinguish two different cases:

1. if c ≤ Cx then the task terminates before we could
actually switch to αH , and we expect f ≤ Q;

2. otherwise, if c > Cx then we need to run at speed
αH to provide the required cycles and we expect f >
Q + o.

We consider the two cases separately. In order to have a
more compact notation we set pH = p(αH) and pL =
p(αL).

In the first case (c ≤ Cx), the finishing time is

f = o +
c

αL

and the energy consumed in one period T is

E = e + pL (f − o) = e +
pL

αL

c. (2)

On the other hand, when Cx < c ≤ Cmax, we have

f = Q + o +
c − Cx

αH

and the energy is

E = 2 e +
pL

αL

Cx +
pH

αH

(c − Cx). (3)

Equations (2) and (3) provide the energy E consumed
when the number of cycles is c. Since the number of cycles
is a random variable with p.d.f. fC(c), then the energy con-
sumed is a random variable too. Our target then becomes
to minimize the expectation Eavg of the random variable E.
Let us compute this value.

Eavg =

∫ Cx

0

E fC(c) dc +

∫ Cmax

Cx

E fC(c) dc

=

∫ Cx

0

(

e +
pL

αL

c

)

fC(c) dc

+

∫ Cmax

Cx

(

2 e +
pL

αL

Cx +
pH

αH

(c − Cx)

)

fC(c) dc

= 2 e +
pH

αH

Cavg −
(

pH

αH

− pL

αL

)

Cx

+

∫ Cx

0

((

pL

αL

− pH

αH

)

(c − Cx) − e

)

fC(c) dc

= e (2− FC(Cx)) +
pH

αH

Cavg

−
(

pH

αH

− pL

αL

)

(GC(Cx) + Cx(1 − FC(Cx)))

where

FC(x) =

∫ x

0

fC(c) dc GC(x) =

∫ x

0

c fC(c) dc.

For compactness we also set

γ(x) = GC(x) + x(1 − FC(x)), (4)

so that the average energy consumed in a period is

Eavg = e (2−FC(Cx)) +
pH

αH

(Cavg − γ(Cx)) +
pL

αL

γ(Cx)

(5)
Notice that GC(Cmax) is equal to Cavg. For this reason we
always have 0 ≤ γ(x) ≤ Cavg for all x.

Equation (5) is a new result in the literature because it
expresses the average energy consumed as function of the
probability density of the task execution cycles fC(c).

It is very insightful to plot the quantity Eavg on a plane
(Cx, Q). Figure 2 shows the level curves of the quantity
Eavg as function of Cx and of Q. In the plot we assumed
an exponential p.d.f. with average value Cavg = 0.2929, the
period T equal to 1 and the power function p(α) = k α3.
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Figure 2. Eavg for uniform execution times.

region occurs for a value of Cx greater than Cavg. In order to
find it analytically, we need to compute the partial deriva-
tive of Eavg with respect to the variables (Cx, Q). After
opportune simplifications, we find that:

∂Eavg

∂Cx

= −e fC(Cx) −
(

p′H − pH

αH

)

Cavg − γ(Cx)

Cmax − Cx

+

(

p′L − pL

αL

)

γ(Cx)

Cx

−
(

pH

αH

− pL

αL

)

γ′(Cx) (6)

where p′L and p′H denote p′(αL) and p′(αH), respectively.

Now, we complete the analysis of the function Eavg by

computing also ∂Eavg

∂Q
, which is

∂Eavg

∂Q
= (p′HαH−pH)

Cavg − γ(Cx)

Cmax − Cx

−(p′LαL−pL)
γ(Cx)

Cx

(7)

Equations (6) and (7) are the components of the gradient
∇Eavg. From functional analysis, we know that the mini-
mum satisfies the condition ∇Eavg = 0. Once the optimal
(Cx, Q) is found, then the constraint αH ≤ αmax must be
checked. In fact, if it is violated, it means that the global
minimum would result in a too high value of αH . It this
case we know from the Kuhn-Tucker conditions that the
minimum occurs when αH = αmax, which means that

Cmax − Cx

T − Q − o
= αmax ⇒ αL =

Cx αmax

αmax(T − 2o) − Cmax + Cx

(8)
From Eq. (5), substituting αH with αmax and αL with the
expression of Equation (8), we find Eavg as function of the
unique variable Cx. The minimal energy solution is found
by applying classical techniques of functional analysis of
one-variable functions.

3.1 Polynomial power function

Once the main equations for the general case have been
found, we show how they can be applied to find the optimal
(Cx, Q) in some significant examples. Due to lack of space,
we assume the time and energy overheads equal to zero (i.e.
o = 0 and e = 0).

When considering continuous speed levels, a common
assumption is that the relationship between the power con-
sumption p and speed α is

p(α) = k αn (10)

for some k, n. The typical value of n is 3, however we keep
the general form as long as the math is tractable.

In these hypothesis, the gradient can be greatly simpli-
fied. In order to find the point of minimal energy we have to
set both the gradient components equal to zero. By setting
∇Eavg = 0, we finally find that the pair (Cx, Q) minimizing
the average energy Eavg must satisfy Equations (9) reported
in Table 1. Due to lack of space we don’t include all the
calculations. For their importance we call the Equations (9)
the minimum stochastic energy equations. Once we know
n and the probability density fC(c), Equations (9) can be
solved and produce the pair (Cx, Q) which minimizes the
energy.

Uniform Density Let us now assume a uniform density
between Cmin and Cmax. It means that

fC(c) =

{

1

Cmax−Cmin
if Cmin ≤ c ≤ Cmax

0 otherwise
(11)

and also, when Cmin ≤ c ≤ Cmax,

FC(c) =
c − Cmin

Cmax − Cmin
GC(c) =

c2 − Cmin
2

2(Cmax − Cmin)
.

(12)
The function γ(c), defined in Eq. (4), is

γ(c) =
−c2 + 2c Cmax − Cmin

2

2(Cmax − Cmin)
(13)

and its derivative is

γ′(c) =
Cmax − c

Cmax − Cmin
(14)

In this case the minimum energy can be simply found
by properly substituting γ(Cx) and γ′(Cx) in the minimum
stochastic energy equations (9).

To simplify and compact them, it is very convenient to
normalize the cycles Cx and Cmin with respect to Cmax.
Hence, we set x = Cx

Cmax
and a = Cmin

Cmax
. Due to lack of

space here we do not report all the simplifications, which
can be accomplished by any symbolic manipulation tool.

When n = 2 the optimal number of normalized cycles
x, which provides the minimal energy, is

xopt =
1 +

√
1 + 3 a2

3
. (15)
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(n − 1) γ(Cx) + Cxγ′(Cx)

(n − 1) (Cavg − γ(Cx)) + (Cmax − Cx)γ′(Cx)

(

Cmax

Cx

− 1

)(

Cavg

γ(Cx)
− 1

)

=
T

Q
− 1

(

Cmax

Cx

− 1

)n−1 (

Cavg

γ(Cx)
− 1

)

=

(

T

Q
− 1

)n (9)

Table 1. Minimum stochastic energy equations.

Instead, when n = 3, the solution is

xopt =
5 −

√
5 +

√
2
√

5(3−
√

5) − 8(1 −
√

5) a2

8
(16)

Interestingly, this result proves that the approach pro-
posed by Zhu and Mueller [22] is sub-optimal, as stated by
themselves. In fact, they suggested to set Cx equal to Cavg.
From both Equations (15) and (16) we see that the opti-
mal value is always greater than Cavg (see also Figure 3).
Providing Cavg cycles at speed αL would lead to increase
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Figure 3. The optimal number of cycles.

the average energy consumed in a period.

Exponential Density The probability density considered
previously is very simple and it allows to exactly find the
pair (Cx, Q) which minimizes the average energy con-
sumed. We consider now a more complex density fC(c)
which better captures the characteristics of real execution
times. Without loss of generality, we normalize the number
of cycles toward Cmax so that the possible values of cycles
are in [0, 1]. As done before we set a = Cmin

Cmax
.

We consider the following exponential p.d.f.:

fC(c) =

{

1

K
eβc(1 − c)(c − a) if c ∈ [a, 1]

0 otherwise
(17)

where K is a proper constant such that
∫ 1

a
fC(c)dc = 1.

The presence of β allows to alter the symmetry of the
density. In fact, for negative β the density shifts to the left,

meaning that values close to Cmin are more likely to happen.
On the other hand, positive values of β means that execution
cycles close to Cmax occur more frequently. Figure 4 shows
some possible functions.
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For exponential densities, the minimal energy (Cx, Q)
pair can only be found by numerical approximation. We
investigated the effect of the p.d.f. asymmetry onto the so-
lution. The result is quite interesting. In Figure 5 we plot
the ratios Cx

Cavg
and Q

T
, assuming a = Cmin

Cmax
= 0.2. A first

result, also noticed for uniform density, is that the optimal
Cx is always greater than Cavg, differently than what sug-
gested in a previous paper [22]. This fact is evidenced by
the black curve which is always above 1. We also highlight
that for big positive values of β (meaning that values close
to Cmax are more likely to occur), Cx tends to Cavg.

4 Conclusions and future work

Deferring the work is an effective technique already pro-
posed in the literature to reduce the energy consumed by the
processor. However, often this technique has been blindly
applied, without a a systemic search of the minimal.

In this paper we have provided the foundations to in-
tegrate the probabilistic timing analysis with energy mini-
mization techniques, starting from the simple case of one
task. This problem has been studied using a general model
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for the processor, taking into account both time and energy
overheads. Thanks to this research, the design of effec-
tive energy minimization schemes using information about
probabilistic execution times is now possible.

Finally, we refuted the idea that providing the average
number of cycles at the lower speed is the best possible
strategy.

References

[1] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-
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