
ENERGY SAVING SCHEDULING FOR EMBEDDED

REAL-TIME LINUX APPLICATIONS

Claudio Scordino and Giuseppe Lipari

Scuola Superiore Sant’Anna

Viale Rinaldo Piaggio, 34 - 56025 Pontedera - Pisa, Italy

{scordino@gandalf.sssup.it,lipari@sssup.it}

Abstract

The problem of reducing energy consumption is becoming very important in the design of embedded
real-time systems. Many of these systems, in fact, are powered by rechargeable batteries, and the goal
is to extend, as much as it is possible, the autonomy of the system. To reduce energy consumption, one
possible approach is to selectively slow down the processor frequency.

In this paper we propose a modification of the Linux kernel to schedule aperiodic tasks in a soft real-
time environment. The proposed solution consists in a new scheduling strategy based on the Resource
Reservation Framework [9], which introduces very little modification to the Linux API. Our scheduler is
based on Algorithm GRUB (Greedy Reclamation of Unused Bandwidth), presented by Baruah and Lipari
[5].

After presenting the algorithm, we describe its implementation on a Intrinsyc CerfCube 250, which
uses a Intel PXA250 processor. We show with an example of multimedia application that, by using our
approach, we save up to 38% of energy with respect to an unmodified Linux.

1 Introduction

Although there is a mathematical theory to exactly
formalize the behaviour of a real-time system, some-
times the design of these systems is still made in
a rough way. Some designers consider that a fast
enough system is always able to respond in a satis-
factory way, and do not consider other factors (like
size, cost, or energy consumption) that are decisive
in the embedded systems sector.

The problem of reducing energy consumption is be-
coming very important in the design and implemen-
tation of embedded real-time systems. Many of these
systems are powered by rechargeable batteries, and
the goal is to extend as much as it is possible the
autonomy of the system. A similar problem is being
addressed in normal workstation PCs. As processors
become more and more powerful, their energy con-
sumption increases correspondingly, and it becomes
a problem to dissipate the heat produced by the pro-
cessor.
To reduce energy consumption, one possible ap-
proach is to selectively slow down the processor fre-
quency. By reducing the frequency, it is also possible
to reduce the voltage at which the processor is func-

tioning, so reducing the power consumption. For ex-
ample, if the processor has little to do for a certain
interval of time, by reducing the frequency we slow
down the processor speed but we can still complete
all activities in time.

However, by reducing the frequency and the proces-
sor speed, we increase the load of the system. In
particular, a certain task will take more time to be
executed. In real-time systems, this means that some
important task may miss its deadline. Therefore, it is
important to identify the conditions under which we
can safely slow down the processor without missing
any deadline.

In this paper we propose a modification of the Linux
scheduler that is able to change the processor fre-
quency reducing the energy consumption, guaran-
teeing at the same time that no task will miss its
deadline. The proposed solution consist in a new
scheduling strategy based on the Resource Reserva-
tion Framework , which introduces very little modifi-
cation to the Linux API. Basically, a new scheduler,
called SCHED CBS is available to the user of an ap-
plication. In this way, it is possible to apply the same
technique also to legacy Linux code.

After presenting the algorithm, we describe its imple-
mentation on a Intrinsyc CerfCube 250, which con-
sists of a Intel PXA250 processor with 32Mb of Flash
ROM and 64 Mb of SDRAM. We configured the sys-
tem to support three different frequencies, 100Mhz,
200Mhz and 400 Mhz. The modified OS is Linux
2.4.18. We show an experiment in which we compare
an unmodified version of Linux with our modified
version. In the experiment, we run a multimedia ap-
plication where tasks are dynamically activated and
suspended with a highly variable load. We show that
by using our approach, we save up to 38% of energy
with respect to an unmodified Linux.

This work has been done in the context of the
OCERA project (IST-35102), which is financially
supported by the European Commission.

2 Related Work

It’s not easy to compare our work with other exist-
ing solutions. This is essentially due to two elements
of difference: the kind of real-time system, and the
kind of experimental tests.

We work in an aperiodic environment, so the prob-
lem is not so trivial as in a periodic context, where if
a task stops, then it will not execute until the next
period (as in [7]). In our system a task could activate
at any time. This assumption reduces the set of time
points in which we can safely reduce the frequency
clock.

Moreover, our results are not based upon some simu-
lation (as in other works): we actually implemented
our scheduling policy in Linux (creating a soft real-
time system) and we actually measured the amount
of energy used by the system.

3 Algorithm GRUB

We chose to implement the Greedy Reclamation of
Unused Bandwidth algorithm ([5]), which is an im-
provement of the Constant Bandwidth Server ([2]).

GRUB is an algorithm belonging to the class of aperi-
odic servers with dynamic priorities. This technique
consists in creating an entity, referred as server, that
manages a set of tasks. However, a limit of some ape-
riodic servers with dynamic priorities is that they
rely on the knowledge of execution times of served
aperiodic tasks. In some cases, though, the execu-
tion time of a task is unknown, or extremely variable
from an instance to another (consider, for example,
a MPEG player). In these cases, the use of a hard
real-time system to manage this kind of applications
would be unsuitable for two reasons:

• First, the worst case execution time (WCET)
of the job could be much higher than its av-
erage execution time. Since the guarantees for
hard real-time tasks are given on the basis of
the WCET (and not on the basis of the average
execution time), this kind of applications could
cause an enormous waste of resources. In fact,
the system is sized according to the WCET of
each real-time task, and this leads to a very
partial utilisation of the performance that it
could offer.

• Second, it’s hard to provide an exact evalu-
ation of the WCET. The fact that the real-
time guarantees depend on the evaluation of
the WCET of each job, makes the hard real-
time system weak respect to some mistake in
this evaluation. If a job doesn’t respect the
evaluated execution time, another task could
miss its deadline.

GRUB is not affected by this problem because it
doesn’t rely on an evaluation of the WCET. It guar-
antees temporal isolation among tasks: as a conse-
quence, a task can’t affect the performance of an-
other task.
In our model, each server is characterised by two pa-
rameters, (Ui, Pi), where Ui is the server bandwidth
(or fraction of the processor utilisation) and Pi is the
period. Algorithm GRUB provides an abstraction of
“slower processor”: the task served by a server Si

with bandwidth Ui executes as it were executing on
a dedicated slower processor with a minimum speed
equal to Ui times the speed of the real processor.
The period Pi represents the granularity of the time
from the point of view of the server. The smaller Pi,
the closer is the virtual time to the real-time.
Each task τi executing on server Si generates a
sequence of jobs J1

i , J2
i , J3

i , . . . , where J j
i be-

comes ready for execution (arrives) at time aj
i (aj

i ≤

aj+1

i ∀i, j), and requires a computation time of cj
i .

We assume that, inside each server, these jobs are
executed in FIFO order, i.e. J j

i has to finish before

Jj+1

i can start executing.
We make the following requirements of our schedul-
ing discipline:

• The arrival times of the jobs (the aj
i ’s) are not

a priori known, but are only revealed on line
during system execution. Hence, our schedul-
ing strategy cannot require knowledge of future
arrival times.

• The exact execution requirements cj
i are also

not known beforehand: they can only be deter-
mined by actually executing J j

i to completion.
(Nor do we require an a priori upper bound

(a “worst-case execution time”) on the value
of cj

i .)

• We are interested in integrating our schedul-
ing methodology with traditional real-time
scheduling — in particular, we wish to design
a scheduler that is a minor variant of the clas-
sical Earliest Deadline First scheduling algo-
rithm (EDF) [1].

In this paper, we will consider a system comprised
of n servers S1, S2, . . . , Sn, with each server Si char-
acterized by the parameters Ui and Pi as described
above. Furthermore, we restrict our attention to sys-
tems where all of these servers execute on a single
shared processor (without loss of generality, this pro-
cessor is assumed to have unit processing capacity)
— we therefore require that the sum of the proces-
sor shares of all the servers sum to no more than one;
i.e.,

(

n
∑

i=1

Ui

)

≤ 1 .

The following theorem formally states the per-
formance guarantee that can be made by Algo-
rithm GRUB vis a vis the behaviour of each server
when executing on a dedicated processor. For a proof
of this theorem, see [5].

Theorem 1 Suppose that job J j
i would begin execu-

tion at time-instant Aj
i , if all jobs of server Si were

executed on a dedicated processor of capacity Ui. In
such a dedicated processor, J j

i would complete at time

instant F j
i

def
= Aj

i +(ej
i/Ui), where ej

i denotes the ex-

ecution requirement of J j
i . If Jj

i completes execution

by time-instant f j
i when our global scheduler is used,

then it is guaranteed that

f j
i ≤ Aj

i +

⌈

(ej
i/Ui)

Pi

⌉

· Pi . (1)

For the previous inequality, it follows that fk
i <

F k
i + Pi. This is what we intend when we say that

Pi is the temporal granularity of the server: by using
algorithm GRUB, every job finishes at most Pi time
units later than the completion time on a dedicated
slower processor.
Several other server-based global schedulers (e.g.,
CBS [2]), can offer performance guarantees some-
what similar to the one made by Algorithm GRUB.
However, Algorithm GRUB has an added feature
that is not to be found in many of the other sched-
ulers — an ability to reclaim unused processor ca-
pacity (“bandwidth”) that is not used because some
of the servers may have no outstanding jobs awaiting
execution.
Now, we describe the algorithm.

Algorithm Variables. For each server Si in the
system, Algorithm GRUB maintains two variables:
a deadline Di and a virtual time Vi.

• Intuitively, the value of Di at each instant is a
measure of the priority that Algorithm GRUB
accords server Si at that instant — Algo-
rithm GRUB will essentially be performing
earliest deadline first (EDF) scheduling based
upon these Di values.

• The value of Vi at any time is a measure of how
much of server Si’s “reserved” service has been
consumed by that time. Algorithm GRUB will
attempt to update the value of Vi in such a
manner that, at each instant in time, server Si

has received the same amount of service that it
would have received by time Vi if executing on
a dedicated processor of capacity Ui.

Algorithm GRUB is responsible for updating the val-
ues of these variables, and will make use of these
variables in order to determine which job to execute
at each instant in time.

At any instant in time during run-time, each server
Si is in one of three states: Inactive, Active Contend-

ing, or Active Non Contending. The initial state of
each server is Inactive. Intuitively at time to a server
is in the Active Contending state if it has some jobs
awaiting execution at that time; in the Active Non

Contending state if it has completed all jobs that ar-
rived prior to to, but in doing so has “used up” its
share of the processor until beyond to (i.e., its virtual
time is greater than to); and in the Inactive state if
it has no jobs awaiting execution at time to, and it
has not used up its processor share beyond to.

At each instant in time, Algorithm GRUB chooses
for execution some server that is in its Active Con-

tending state (if there are no such servers, then the
processor is idled). From among all the servers
that are in their Active Contending state, Algo-
rithm GRUB chooses for execution (the next job
needing execution of) the server Si, whose deadline
parameter Di is the smallest.

While (a job of) Si is executing, its virtual time
Vi increases (the exact rate of this increase will be
specified later); while Si is not executing Vi does
not change. If at any time this virtual time be-
comes equal to the deadline (Vi == Di), then the
deadline parameter is incremented by Pi (Di ←
Di + Pi). Notice that this may cause Si to no longer
be the earliest-deadline active server, in which case it
may surrender control of the processor to an earlier-
deadline server.

State Transitions. Certain (external and inter-
nal) events cause a server to change its state (see
Figure 1).

inactive

activeContending

activeNonContending

1

2a

2b

3

4

FIGURE 1: State transition diagram.

1. If server Si is in the Inactive state and a job J j
i

arrives (at time-instant aj
i), then the following

code is executed

Vi ← aj
i

Di ← Vi + Pi

and server Si enters the Active Contending

state.

2. When a job J j−1

i of Si completes (notice that
Si must then be in its Active Contending state),
the action taken depends upon whether the
next job J j

i of Si has already arrived.

(a) If so, then the deadline parameter Di is
updated as follows:

Di ←− Vi + Pi ;

the server remains in the Active Contend-

ing state.

(b) If there is no job of Si awaiting execution,
then server Si changes state, and enters
the Active Non Contending state.

3. For server Si to be in the Active Non Contend-

ing state at any instant t, it is required that
Vi > t. If this is not so, (either immediately
upon transiting into this state, or because time
has elapsed but Vi does not change for servers
in the Active Non Contending state), then the
server enters the Inactive state.

4. If a new job J j
i arrives while server Si is in the

Active Non Contending state, then the deadline
parameter Di is updated as follows:

Di ←− Vi + Pi ,

and server Si returns to the Active Contending

state.

5. There is one additional possible state change
— if the processor is ever idle, then all servers
in the system return to their Inactive state.

Algorithm GRUB mantains a global variable total
system utilisation that, at every instant, is equal to

U =

n
∑

i=1,Si 6=Inactive

Ui

where n is the number of servers in the system.
This variable is initialised to 0 and it is updated ev-
ery time a server enters in or exits from state Inactive.
In particular, when Si exits from state Inactive U is
increased of Ui, whereas when Si enters state Inactive

it is decreased of Ui.
The rule for updating the virtual time of every server
is as follows:

d

dt
Vi =

{

U
Ui

if Si is executing

0 otherwise
(2)

Let us make an example to understand the way the
algorithm works. Consider a server S1 with band-
width U1 = 0.25 and period P1 = 20msec that serves
a MPEG player that needs to visualise 25 frames
per second. If the system is fully utilised (i.e. the
total system bandwidth U is equal to 1), then Equa-
tion 2 tells us that the virtual time is increased at
a rate of 1/0.25 = 4. By looking at the algorithm
rules, we see that the server executes approximately
P1/4 = 5msec every period P1.
In general, the bandwidth U1 can be computed using
some rule of thumb, or by performing a careful anal-
ysis of the application code. For our purpouses, in
this example we assume that in the worst case 5msec
are enough to visualise a frame in most cases.
However, suppose that at some point the total sys-
tem utilisation U is equal to 0.75. Then, server S1

can execute more than 5msec every period, because
we can reclaim the spare bandwidth. According to
Equation 2, the virtual time is increased at a rate of
0.75/0.25 = 3. This means that our server will be
able to execute for P1/3 = 6.66msec every period.
Thus, if our application sometime requires more than
5msec to display a frame, it can take advantage of
the reclaimed bandwidth and still execute inside the
period boundary. This property can help us in set-
ting the server bandwidth U1 to a lower value. For
example we can decide to set U1 equal to the aver-
age bandwidth required by the application. Algo-
rithm GRUB ensures that our application will take
advantage of the spare bandwidth and execute more
than U1P1 in most cases. This property of GRUB is
called “reclamation”, because we are giving the spare
bandwidth to the needing servers.

3.1 Power-aware scheduling

We can use GRUB to decide when the frequency of
the processor can be changed. As first step, let us
assume that the processor speed can be varied con-
tinuosly, from a maximum speed factor of 1 (i.e. the
processor works at its maximum speed) to a mini-
mum of 0 (i.e. processor is halted). As explained
previously, GRUB maintains a global variable U that
is the sum of the bandwidths of all servers that are
not in the Inactive state. The key idea is that, if we
set the speed factor of the processor to be equal to
U , no server will miss its deadline.

In practice, if the processor is not fully utilised
(U < 1) the exceeding bandwidth (1 − U) can be
used in two ways:

1. To execute the active servers for a longer time,
so that they can execute faster and finish ear-
lier. This is the “reclamation” property, and it
is the original goal the GRUB algorithm was
designed for.

2. To slow down the processor. Each active server
will still execute for a longer time, but they will
execute at a slower speed. The net effect is that
their performance is not degraded.

Let us make an example to understand how it works.
Suppose that we have a server S1 with bandwidth
U1 = 0.2 and period P1 = 10msec. If U = 1, it
means that the system is fully utilised, i.e. there
are many servers in the system that are not in the
Inactive state, and the sum of their bandwidth is
equal to 1. Under these conditions, our server S1

will be allowed an execution of 2msec every period
P1 = 10msec. If the system utilisation U goes down
to 0.5 (for example because some server has no job to
execute and is in the Inactive state), then our server
S1 is allowed to execute for (U1/U)P1 = 4msec units
of time. If we slow down the processor speed to
a factor of 50%, the server still executes the same
amount of code as in the first case, because it ex-
ecutes twice as much (4msec instead of 2msec) but
at half the speed. Therefore, the performance of the
tasks served by server S1 does not change.

Of course, no existing processor can vary its speed
with continuity. So, we set some “thresholds” on
the values of the total system bandwidth. If the sys-
tem bandwidth goes below a certain threshold we can
lower the processor frequency, and hence the proces-
sor speed. The implementation details of the algo-
rithm are explained in the following sections.

4 Implementation details

4.1 Generic Scheduling

Since we want to limit as much as it is possible
the modifications to the standard Linux scheduler,
we decided to apply a small patch (called Generic
Scheduler Patch) that exports the necessary kernel
symbols. Then, we implemented our scheduler as a
loadable kernel module.
Our scheduler needs to “intercept” the job arrival
(i.e. tasks that are unblocked) and the job finishing
(i.e. tasks that are blocked). Moreover, the scheduler
must know when tasks are created and when tasks
terminate.
Therefore, we decided to export an inter-
face to the scheduler through the standard
sched_setscheduler() system call, adding a new
scheduling policy, called SCHED_CBS, and extending
the structure sched_param.
For this reason, the Generic Scheduler Patch exports
the following hooks that can be used to intercept the
interesting scheduling events:

block hook is invoked when a task is blocked, such
that the scheduler understands that the cur-
rent job has finished.

unblock hook is invoked when a task is unblocked,
such that the scheduler is informed of the ar-
rival of a new job.

fork hook is invoked when a new task is created by
a fork() and a pointer to the task is passed as
parameter.

cleanup hook is invoked when a task is termi-
nated, such that the scheduler can free the in-
ternal resources.

setsched hook is invoked when the system calls
sched_setscheduler() or sched_setparam()
are called by the user.

All the hooks, except setschedsched_hook have
a parameter that is a pointer to the structure
task_struct of the corresponding task.
The patch inserts a new field called private_data

in the task_struct, of type void *. It is a pointer
used by our scheduler to access the private real-time
data of every task. In our case, it is a pointer to
the server that handles the task. If necessary, the
scheduler must set this field to the appropriate data
structure during the fork_hook. When the module
is removed, it must ensure that all tasks have their
private_data set to NULL.
Our dynamically loadable scheduler modifies the
task priority, raising the selected task to the max-
imum priority, and then calls the standard Linux

scheduler. Based on the information received by the
hooks, our scheduler selects which task has to be exe-
cuted and sets its policy to SCHED_FIFO or SCHED_RR
and the rt_priority to the maximum real-time pri-
ority + 1. Then, it invokes the Linux scheduler.
In practice, the Linux scheduler acts as a dispatcher
for our scheduler. Thus, the modification to the stan-
dard Linux scheduler are minimal. In particular, our
implementation will take advantage of the more effi-
cient scheduler that is being provided by Ingo Molnar
for the next version of Linux.
Note that in this implementation, the scheduling al-
gorithm does not assume any periodic behaviour of
the task. As matter of fact, the scheduler only inter-
cepts the blocking/unblocking events of a task, and
it is the task’s responsibility to implement a periodic
behaviour, if required. Thus, our scheduler is able
to serve any kind of task, from non-periodic legacy
Linux processes to periodic soft real-time tasks.

4.2 CPU clock frequency assignment

The hardware we used in our experiments is a In-
trinsyc CerfCube 250, consisting of 32 MB Flash
ROM, 64 MB SDRAM, and a Ethernet 10/100 Mbps.
The processor is an Intel PXA250. It is a super-
pipelined 32 bits RISC processor based on the Intel
Xscale micro-architecture. This architecture permits
a on-the-fly switch of the clock frequency and a so-
phisticated power consumption management.
In particular, the processor can be in one of the fol-
lowing states:

1. Turbo Mode: the processor core works at the
peak frequency.

2. Run Mode: the processor core works at its
“normal” frequency. In this mode, it is as-
sumed that the processor frequently accesses
external memory, so it is convenient for it to
work at a frequency lower than the Turbo Mode
frequency.

The register in which it is possible to select the
clock frequency is called CCCR (Core Clock Con-
figuration Register) and can be found at the address
0x41300000. The CCCR register manages the core
clock frequency which the memory controller clock,
the LCD clock and the DMA clock depend upon. In
this register, the following parameters are specified:

- Frequency multiplier from the quartz frequency
to the memory controller (L)

- Frequency multiplier from the memory fre-
quency to the CPU frequency in Run Mode
(M)

- Frequency multiplier from the CPU frequency
in Run Mode to the CPU frequency in Turbo
Mode (N)

The value of L is chosen depending on the constraints
of the external memory and of the LCD and it is usu-
ally constant, while the values of M and N can change
in order to change the speed of the processor. Value
M is chosen based on the bus speed constraints and
on the minimal performance requirements. Value N
is based on the values of peak performance.
To modify the system clock frequency, register
CCLKCFG can be used, that is register number 6
of the co-processor 14 (which is dedicated to power
management at the lower level). It is a 32 bit register
that is used to enter the Turbo Mode and the Fre-
quency Change Sequence. Register CCLKCFG can
only be modified through the following assembler in-
structions.

• To read the value of the register and put it in
R0, you must use

MCR p14, 0, R0, c6, c0, 0

• To copy the content of register R0 into register
CCLKCFG, you must use

MRC p14, 0, R0, c6, c0, 0

To ensure that the Turbo bit does not change when
we enter the Frequency Change Sequence, we must
perform a read-modify-write sequence of assembler
instructions.

As you can see, there is a great deal of flexibility
in setting the clock frequencies. We had to choose
how to implement our algorithm, which frequency to
use as base frequencies, and so on. We decided to
use only 3 levels for the processor clock frequency
(100 MHz, 200 MHz, 400 MHz), whereas the mem-
ory frequency does never change. By using these 3
levels, we are able to use the minimum possible fre-
quency (100 Mhz) and the maximum one (400 Mhz).
Therefore, we have two thresholds, Uth1 = 1/4 and
Uth2 = 1/2.

One detail that must be taken into careful considera-
tion is the overhead of changing frequency. Changing
frequency is not “for free”, as the processor take some
time (order of tens to hundreds of micro-seconds) to
adjust to the new frequency. Althought this is not
so high, it cannot be ignored. In particular we want
to avoid limit situations in which the processor keep
changing its frequency up and down, because this
would completely trash the system.

When an increase of the total system bandwidth U
goes over one of the thresholds, we immediately in-
crease the processor frequency. Indeed, even if it
could be a short transitory peak we cannot be sure
and we do not want to risk a degradation of the sys-
tem performances. When a decrease of the total sys-
tem bandwidth U goes below one of the threshold,
instead, we do not change the frequency immediately.
In fact, in case of a short temporary decrease of the
bandwith, we could end up changing the frequency
very often up and down. Therefore, when U goes
below a threshold, we set a timer. If the timer ex-
pires and U is still below the threshold we lower the
frequency.
Now we compute the maximum overhead of the fre-
quency switch. Let δ be the maximum time it takes
to switch frequency and let ∆ be the timer expira-
tion interval. We can have a maximum of 2 frequency
switches every ∆, one to go down and another one
to go up. Therefore, in the worst case this accounts
for a bandwidth reduction of 2δ

∆
.

In our implementation, the timeout duration is
a customisable parameter of the algorithm, called
PWR_TIMEOUT which specifies the timer’s duration in
seconds.
Every threshold level is described by the following
struct:

struct pwr_level {

int bandwidth;

int run_mode;

int turbo_mode;

int selected;

struct t_data_struct pwr_timer;

};

The first parameter (bandwidth) is the maximum
bandwidth that this level can support (the band-
width is expressed as an integer because we use a
fixed point representation). The second and third pa-
rameter are, respectively, the Run Mode multiplier
(M) and the Turbo Mode multiplier (N). Variable
selected is used to handle the timer. When the
total system utilisation goes below bandwidth, we
set the timer pwr_timer and the variable selected.
If U goes above the threshold bandwidth before the
timer expiration, selected is set to false, and the
timer is canceled.
A global variable

struct pwr_level* current_pwr_level;

points to the current power level.

5 Experimental results

One may argue that varying the processor frequency
only, without touching the peripherals frequencies

(like memory, for example) does not bring apprecia-
ble advantages. We will show that this is not the
case.
Our study is particularly focused on multimedia ap-
plications. Therefore, we decided to evaluate the
performance of our system using a multimedia ap-
plication. However, our approach can be used for
a large range of different applications, because it is
completely transparent to the application character-
istics.
Unfortunately, our system, the Intrinsyc CerfCube,
does not present a video output. So, we decided to
focus our attention to a audio decoder. We selected
the decoder provided by the Xiph.Org Foundation
that is a “non-profit organisation dedicated to pro-
tecting the foundations of Internet multimedia from
control by private interests”. Ogg Vorbis is a non-
proprietary compressed audio format that provides
high quality (from 8 to 48 bits, polyphonic) with
fixed or variable bitrate that ranges from 16 to 128
Kbps per channel. It is in direct competition with
MPEG-4 et similia.
To execute the first test, we decompressed some au-
dio stream at 44100 Hz and two channels, measuring
the time necessary to decompress every stream under
the different fixed clock frequencies.
From the obtained values, we extracted how much
the speed of decompression is related to the speed of
the CPU. The result is shown in Figure 2, where we
show on the x-axis the speed of the processor, and on
the y-axis the decompression speed. As you can see
the relationship is almost linear. This justifies our as-
sumption that by doubling the processor speed, the
computation time of one task’s job halves. In the
Figure we also show the 99% confidence interval.

Speed

100MHz 200MHz 400MHz

CPU Frequency

1

4

ideal rise

real rise

FIGURE 2: Decompression speed related to
CPU speed (99% confidence interval).

Then, we evaluated the power consumed by our sys-
tem under different conditions, with or without our
algorithm. We measured the current entering into
the CerfCube with a circuit powered separately by a
9 V battery that measures the current and sends it
to a host computer via serial communication. The

circuit puts a very small resistor in series with the
CerfCube and measures the voltage at the ends of
the resistor.
By using our algorithm, we measured the temporal
evolution of the current under different loads. In
Figures 3, 4, 5, we show the temporal evolution of
the input current when the total load is U = 0.25,
U = 0.5 and U = 1 respectively.

 120

 125

 130

 135

 140

 145

 0 2000 4000 6000 8000 10000

FIGURE 3: Temporal evolution of the cur-
rent with system bandwidth U = 0.25

 155

 160

 165

 170

 175

 180

 185

 190

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

FIGURE 4: Temporal evolution of the cur-
rent with system bandwidth U = 0.5

 216

 218

 220

 222

 224

 226

 228

 0 500 1000 1500 2000

FIGURE 5: Temporal evolution of the cur-
rent with system bandwidth U = 1

We computed the average values of the input current,
reported in the table 1.

CPU clock Current
frequency

100 MHz 446.0 mA
200 MHz 508.5 mA
400 MHz 579.9 mA

TABLE 1: Average values of the input cur-
rent.

In Figure 6 we also report what happens with our al-
gorithm when the total bandwidth goes from 0.1 to
1. As we said previouosly, the processor frequency
is changed from 100 Mhz to 400 Mhz. The temporal
evolution of the current is reported in Figure 6.

 0

 50

 100

 150

 200

 250

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

FIGURE 6: Temporal evolution when the
total bandwidth goes from 0.1 to 1

Our algorithm brings an advantage in two distinct
situations.
Idle System. When the system is idle, we can lower
the frequency to 100 Mhz. Without the frequency
scaling mechanism, it is necessary to mantain the
frequency to 400 Mhz all the time because we must
guarantee maximum performance under peak load.
The input current when the system is idle is shown
in Figure 7. The average value of the input current
is 250.5 mA.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5000 10000 15000 20000 25000 30000 35000 40000

FIGURE 7: An idle system with voltage
scaling

If the voltage scaling algorithm is not activated and
the system is idle, the input current is shown in Fig-
ure 8. The average value of the input current is 406.8
mA. We can say that we save up to 38.4% of power
in the average when the system is idle.
Non idle systems. When the system is not idle and
the required total bandwidth is less than 1, it is pos-
sible to find a clock frequency less than 400 Mhz that
respects the performance of the applications. We run
an application that decodes an audio stream using a
bandwidth of 0.15. By using our voltage scaling algo-
rithm we measured an average current of 343.6 mA,
whereas without voltage scaling, the average current
was 433.3 mA. Therefore, we saved up to 20.7%.

 80

 100

 120

 140

 160

 180

 200

 0 10000 20000 30000 40000 50000 60000 70000 80000

FIGURE 8: An idle system without voltage
scaling

The most general case is when we have many applica-
tions that activate and deactivate themselves many
times. In that case, the load of the system is highly
variable, and we can take fully advantage of the volt-
age scaling algorithm.

We executed the audio decoder many times on dif-
ferent audio streams. Every instance is assigned a
different value of the bandwidth, so that the total
bandwidth of the system goes up and down, as shown
in Figure 9. We expect a similar behaviour in the
temporal evolution of the input current.

U

Linux
0.1

0.5

1

0.25
264.ogg

65.ogg

30.ogg 30.ogg

71.ogg

10sec
t

FIGURE 9: Variation of the bandwidth
during the test.

In Figure 10 we show the input current measured in
the presence of the voltage scaling algorithm. You
can verify that the temporal evolution is similar to
the one of Figure 9. The average input current is
413.3 mA.

 0

 50

 100

 150

 200

 250

 0 100000 200000 300000 400000 500000 600000 700000

FIGURE 10: Input current with voltage
scaling

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0 100000 200000 300000 400000 500000 600000 700000

FIGURE 11: Input current without voltage
scaling

The input current measured with no voltage scaling
is shown in Figure 11. The average input current is
461.2 mA. Therefore, we saved up to 10.4 %.

6 Conclusions

We modified the Linux OS in order to guarantee
soft real-time tasks and at the same time reduce the
power consumption. The resulting system is highly
modular because is based on the Loadable Kernel
Module feature of Linux. It currently supports In-
tel PXA250 based architecture. We believe that it
could be easily portable on different hardware archi-
tectures. The code is distributed under the GPL and
it can be dowloaded from http://www.ocera.org.

References

[1] C.L. Liu, and J. W. Layland, January 1973,
Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment, Journal of
ACM, Vol. 20, No. 1, pp. 46-61.

[2] L.Abeni and G.Buttazzo, December 1998, Inte-
grating Multimedia Applications in Hard Real-
Time Systems, Proceedings of the IEEE
Real-Time Systems Symposium, Madrid,
Spain, pp. 4-13.

[3] Luca Abeni and Giuseppe Lipari, Decem-
ber 2002, Implementing Resource Reservations
in Linux, Real-Time Linux Workshop,
Boston (MA).

[4] Intel corporation, February 2002, Intel PXA250
and PXA210 Application Processors Devel-
oper’s Manual, order number 278522-001.

[5] Giuseppe Lipari and Sanjoy Baruah, June
2000, Greedy reclamation of unused bandwidth
in constant-bandwidth servers, Proceedings
of the EuroMicro Conference on Real-
Time Systems, Stockholm, Sweden, pp.
193-200.

[6] Giuseppe Lipari and Sanjoy Baruah, May 2001,
A hierarchical extension to the constant band-
width server framework, Proceedings of the
Real-Time Technology and Applications
Symposium, Taipei, Taiwan.

[7] H.Aydin, R.Melhem, D.Moss, P.Mejia-Alvarez,
December 2001, Dynamic and Aggressive
Scheduling Techniques for Power-Aware Real-
Time Systems, Proceedings of Real-Time
System Symposium, London, UK, pp.95-
105.

[8] Ismael Ripoll, Pavel Pisa, Luca Abeni, Paolo

Gai, Agnes Lanusse, Sergio Saez, and Bruno
Privat, 2002, WP1 - RTOS State of the Art
Analysis: Deliverable D1.1 - RTOS Analysis,
Ocera (http://www.ocera.org).

[9] R. RajKumar, K. Juvva, A. Molano, and S.
Oikawa, January 1998, Resource kernels: A
resource-centric approach to real-time systems,
Proceedings of the SPIE/ACM Confer-
ence on Multimedia Computing and Net-
working.

[10] Alessandro Rubini and Jonathan Corbet, Linux
Device Drivers 2nd edition, O’REILLY.

