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Abstract

Resource reservations have been proven to be an effective technique to support hard and soft real-time
applications in open systems, and some implementations for Linux have already been proposed in the
past. However, such implementations generally focus on providing guarantees to real-time applications,
disregarding the performance of non real-time activities. In this paper, the problems encountered while
using a reservation-based scheduling algorithm in Linux are described, showing why the original algorithm
is not suitable for scheduling non real-time activities. Then, the properties required for properly scheduling
non real-time tasks are described, and a novel algorithm (called HGRUB) is analysed, showing how it
effectively addresses the presented issues. The performance of HGRUB are then evaluated (by using our
implementation in Linux) and compared with the performance of traditional reservation systems.

1 Introduction

Recently, considerable effort has been devoted to
support real-time activities in such general-purpose
operating systems (GPOSs) as Linux. This kind
of real-time support is important for a new class
of time-sensitive applications (audio/video players,
video on-demand servers, teleconferencing systems,
IPTV streamers, but also CD/DVD burners, soft
modem drivers and video-games), but is also useful

for supporting more “traditional” real-time applica-
tions running on embedded boards.

As an example of this trend, there is a strong on-
going effort to reduce the kernel latencies in Linux:
Ingo Molnar and other Linux kernel developers have
recently proposed a kernel patch called preempt-rt [1]
to reduce the maximum interrupt latency down to a
few tens of microseconds. Because of these improve-
ments, the ideal goal of supporting both real-time
and non real-time applications on the same OS has

1



become achievable. However, reducing interrupt la-
tency is not per se sufficient without the support of
appropriate scheduling strategies. Indeed, a GPOS is
an open system, where applications can dynamically
activate at any time, and the scheduler cannot make
any restrictive assumption on the characteristics of
the programs.

Resource Reservations [14] have emerged as an
effective technique to support time-sensitive appli-
cations on such GPOSs as Linux (for example, see
Linux/RK [10, 15]). This technique provides support
for time-sensitive applications by allowing the inte-
gration of classical real-time techniques, developed to
meet timing constraints on RTOSs, with the general-
purpose allocation strategies used on GPOSs.

CPU reservations have been traditionally imple-
mented by using a dedicated aperiodic server (in
particular, the Deferrable Server [18]) per reserved
task [14, 15]. Unfortunately, this implementation
strategy generates problems when tasks block and
unblock dynamically [18]. This particular problem
has been solved by the Constant Bandwidth Server
(CBS) class of algorithms [2], which uses dynamic
priorities to correctly cope with dynamic aperiodic
arrivals.

However, most of the existing work in this area
mainly focused on providing guarantees to real-time
applications, disregarding the performance of non
real-time activities. As a result, the proposed so-
lutions strongly penalise batch and interactive pro-
cesses: for example, although algorithms like the
CBS can provide a predictable QoS to real-time ac-
tivities [3], they cannot be used to schedule generic
tasks, because of the so called “Greedy Task” and
“Short Period” problems. The first contribution of
this paper is to identify such problems, and to for-
mally define the properties needed for serving such
applications (namely, the worst-case fairness property).

As a second contribution, a scheduling algorithm
(HGRUB - Hard GRUB) that provides the desired
property is designed to address the issues presented
above. This algorithm harmonically blends three dif-
ferent ideas: provides the same performance guaran-
tees to real-time applications as a traditional reser-
vation algorithm (like the CBS), efficiently reclaims
unused CPU time, and provide some kind of fair-
ness to non real-time applications. These results
are achieved by combining a hard reservation be-
haviour [15] with a reclaiming mechanism [9].

Finally, the algorithm has been implemented in
the Linux kernel, and used to schedule real-time ap-
plications along with interactive and batch tasks,
confirming that HGRUB is able to properly serve
both real-time tasks (providing the same QoS guar-

antees provided a “traditional” reservation-based al-
gorithm) and non real-time tasks (providing worst-

case fairness and good throughput to batch applica-
tions, and responsiveness to the interactive ones).

The rest of the paper is organised as follows.
Section 2 introduces the scheduling model that will
be used throughout the paper, and briefly recalls
the basic Resource Reservation concepts. Section 3
presents the problems address in this paper, and in-
troduces the HGRUB algorithm as an effective solu-
tion. A formal description of such algorithm is con-
tained in Section 4, whereas Section 5 presents some
experimental results. Finally, Section 6 presents the
conclusions, open issues and future work.

2 Background

This section defines the objectives of this work, and
introduces the formal notation and scheduling model
used in the paper. Then, the Resource Reservation
approach is presented, together with a brief overview
of the related work.

2.1 Scheduling model

Although the techniques and principles described
here are quite general, this paper only focuses on
CPU scheduling. To simplify the description, the
following definitions are introduced:

Definition 1 A real-time task1 τi is a stream of
jobs (or instances) Ji,1, Ji,2, Ji,3, ..., where Ji,j

becomes ready for execution (arrives) at time ri,j

(ri,j ≤ ri,j+1 ∀i, j), requires a computation time
ci,j, and finishes at time fi,j.

Each job Ji,j is also characterised by a deadline
di,j , that is respected if fi,j ≤ di,j , and is missed if
fi,j > di,j . A real-time task τi is said to be periodic
if ri,j+1 = ri,j + Pi, where Pi is the task period. In
an open system, tasks are often aperiodic, and it is
not possible to assume strict relations between ri,j

and ri,j+1.

Definition 2 A task τi with no deadlines associated
to its instances is said to be non real-time. Non real-
time tasks can be interactive or batch.

• A non real-time task τi is interactive if it blocks
and unblocks reacting to some external event.
Usually, it requires a (relatively) short compu-
tation time between consecutive blockings.

• A non real-time task is said to be batch if it
is (almost) continuously active, and it never
(or very rarely) blocks. Scientific computation
programs are the typical example of such tasks.

1In this paper we use the word “task” to indicate a generic scheduling entity, that can be either a thread or a process.
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The goal of a scheduler for these tasks is to
fairly allocate the processor to all batch pro-
grams, so that they can all progress continu-
ously.

2.2 Objectives

The objective of this paper is to identify a scheduling
algorithm that can be used for scheduling both hard
real-time, soft real-time and non-real-time tasks.
More formally, such scheduling algorithm must com-
ply with the following specifications:

1. Provide timely service to hard and soft real-
time tasks. In other words, it must provide
both deterministic real-time guarantees and
some form of more “relaxed” guarantees (for
example, based on probabilistic deadlines)

2. Reduce the response time of interactive tasks
as much as possible

3. Fairly allocate the CPU bandwidth to batch
tasks

4. Maximise the throughput. More specifically,
the scheduler should never idle the processor
when there is some active task; moreover, it
should avoid unnecessary preemptions and con-
text switches.

It is important to point out that this paper fo-
cuses on the scheduling algorithm, and not on the
policies for assigning the scheduling parameters. In
particular, this paper does not address the prob-
lem of dynamically assigning and modifying the
scheduling parameters for soft real-time and non-
real-time tasks. Many papers deal with heuristic al-
gorithms and feedback control schemes for adapting
the scheduling parameters to the need of the applica-
tion [5]. Instead, we want to completely separate the
problem of scheduling from the problem of selecting
the scheduling parameters 2.

While the goal in scheduling real-time tasks can
be precisely defined (all deadlines must be respected,
or some QoS metric dependent on the deadlines must
be maximised), the goal in scheduling interactive and
batch tasks is more fuzzy. To help in identifying such
goal, the next sections highlight some bad behaviours
obtained when applying resource reservations to in-
teractive and batch tasks.

Since reservation-based schedulers have been
originally designed to integrate real-time and non
real-time tasks (and they seem to provide most of

the properties mentioned above) this paper focuses
on such class of algorithms.

2.3 Resource Reservations

The basic idea behind the Resource Reservation tech-
nique is to reserve a fraction of the time to time-
sensitive applications through real-time scheduling.
In this way, real-time priorities can be securely used
even by non-privileged users (it is interesting to note
how Linux developers arrived to similar conclusions
through a completely different path [12, 11]).

The main advantage of this technique is the abil-
ity to provide temporal protection between tasks,
meaning that the temporal behaviour of each task
is isolated from the rest of the system, and it is pos-
sible to guarantee the real-time performance of a task
by considering it in isolation. Such property is par-
ticularly useful when mixing hard and soft real-time
applications on the same system.

A Resource Reservation RSVi on a resource R
for a task τi is described by the tuple (Qi, Ti), mean-
ing that the task is reserved the resource R for a time
Qi in a period Ti. Qi is also called maximum budget
of the reservation, and Ti is called reservation period.

The first example of a Resource Reservation al-
gorithm was the CPU Capacity Reserve proposed
by Mercer and Tokuda [14]. According to this al-
gorithm, each task is assigned a budget qi that is
decreased during task execution. The CPU is sched-
uled according to Fixed Priority and a task is allowed
to execute only when its budget is greater than 0.
The budget is periodically recharged to Qi every Ti

time units. This is basically the behaviour of the De-
ferrable Server (DS) algorithm [18], where each task
is served by a dedicated server. As a result, aperiodic
activations and deactivations can break the reserva-
tion behaviour, as shown in [4].

The CBS algorithm [2] addresses this problem
by using dynamic priorities: each task τi is sched-
uled through an abstract entity Si called server,
which is responsible for assigning τi a scheduling
deadline, denoted by ds

i , according to the algorithm
rules. Then, the algorithm orders all active servers
in an Earliest Deadline First (EDF) queue by their
scheduling deadlines. The server with the earliest
scheduling deadline is selected for execution. Like
all the reservation-based algorithms, the CBS is char-
acterised by three mechanisms: accounting, enforce-
ment, and replenishment. Accounting is based on the
server budget qi, which measures the consumed CPU
time according to the following rule:

2We believe that the problem of selecting the server parameters is a higher level problem that depends on the characteristics

of the application. Moreover, a good scheduler with certain good properties forms a strong base for building solid feedback

control schemes and heuristics.
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• when the task served by Si executes for a time
δt, qi is decreased by δt

Enforcement and replenishment are performed ac-
cording to the following rule:

• when the budget arrives to 0 and the task has
not yet completed its execution, the budget is
immediately recharged, the server scheduling
deadline is postponed to ds

i = ds
i + Ti, and the

EDF queue is reordered (hence, a preemption
may occur)

If, after postponing the server deadline, the server
is still the earliest deadline server, the task contin-
ues to execute; note that this behaviour implements
soft reservations, as defined in [15]. A more formal
description of the CBS algorithm is provided in Ap-
pendix A.

A CBS is characterised by the following property:

Property 1 If a task served by a server Si =
(Qi, Ti) is activated for the first time at time t0, and
has an execution requirement of Ci, it will receive at
least max(Ci, kQi) units of execution within t0+kTi,

for all k = 1, . . . ,
⌈

Ci

Qi

⌉

.

Since the CBS can properly cope with aperiodic
activations, in this paper it will be used as a baseline
reservation-based algorithm.

2.4 Algorithms based on CBS

Over the past years, some other reservation algo-
rithms which use basic CBS techniques to cope with
dynamic activations and deactivations have been
proposed. They can be classified according to the
following properties:

Definition 3 An algorithm implements hard reser-
vations if, when the server budget is depleted, the
task is suspended until the next replenishment time.
This rule is the opposite of the soft reservation rule
used by the original CBS

Definition 4 An algorithm implements reclaiming
if it is able to reclaim the excess bandwidth from other
servers executing less than their allocation, and/or
by other unallocated bandwidth in the system.

The IRIS algorithm (Idle-time Reclaiming Im-
proved Server, [13]) adds the hard reservation prop-
erty to CBS and uses such a property to do reclaim-
ing. The idea is that, when the processor becomes
idle, then it is possible to anticipate the recharging
time of all servers. The algorithm is very simple and
effective, but it might suffer from an excessive num-
ber of context switches, as explained in the original
IRIS paper.

The GRUB (Greedy Reclamation of Unused
Bandwidth, [9]) algorithm adds reclaiming to the
CBS algorithm. It introduces the concept of state
of a server, and keeps track at each instant of the
sum of the bandwidths of the active servers to effi-
ciently reclaim all unused bandwidth in the system,
both from unallocated system bandwidth and from
servers executing less than allocated. GRUB can ef-
ficiently handle both periodic and aperiodic tasks,
and can be used in open systems.

3 Non Real-Time Tasks

Resource Reservation algorithms have been designed
to allow scheduling mixtures of hard real-time, soft
real-time and non real-time tasks so that the real-
time tasks are not penalised by the other tasks run-
ning in the system (temporal protection).

However, when using an algorithm like the CBS
in a GPOS it is possible to notice some limitations
that make it inadequate for open systems. First of
all, it could be difficult to correctly dimension the
reservations for non real-time tasks, because such
(batch or interactive) tasks are often characterised
by an intrinsically non periodic behaviour. More-
over, batch tasks are often CPU hungry (so, their
execution time will generally be much larger than the
reserved budget). In this situation, a soft reservation
rule allows the served task to execute for more time
than reserved (if such time is not used by other reser-
vations), but in doing so it postpones the scheduling
deadline, creating some scheduling anomalies.

3.1 Issues with the Original CBS

Consider two batch tasks τ1 and τ2 served by two
servers with the same period. If the two tasks are
activated simultaneously, the CBS guarantees that
each of the two tasks gets the proper share of the
processor in every interval of time. However, if τ1

is activated at time t1 and τ2 is activated at time
t2 >> t1, according to the CBS rules τ1 is scheduled
without interruptions in the interval [t1, t2]. As a
consequence, the scheduling deadline ds

1 is postponed
many times and can soon assume a large value. This
phenomenon is called “deadline aging”.

τ 1
Q = 1ms

T = 4ms
1

1

T = 4ms
2

2

Q = 3msτ 2

t

t

1

2

FIGURE 1: The “Greedy Task” problem.
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The effects of deadline aging are visible in Figure 1,
showing two tasks τ1 and τ2 served by two CBSs S1

and S2 with parameters Q1 = 1ms, Q2 = 3ms, and
T1 = T2 = 4ms, when τ2 is activated 4ms after τ1.
By looking at the figure, it is possible to see that from
time t1 to t1 + 4ms, τ1 is the only active task in the
system, so it is allowed to execute and its deadline
is postponed every time the budget is exhausted (at
time t1 +1ms, t1 +2ms, t1 +3ms, and t1 +4ms). As
a result, when τ2 is activated at time t2 = t1 + 4ms

its scheduling deadline ds
2 = t1+8ms is much smaller

than ds
1 = t1 + 16ms, and τ2 is continuously sched-

uled until t1 + 13ms when the two deadlines ds
1 and

ds
2 are comparable. As a result, τ1 is not executed

for a large interval of time. After that, the schedule
continues as expected and the CPU is fairly shared
between the two tasks. In the following, we will refer
to this phenomenon as the “Greedy Task” problem.

Intuitively, the greedy task problem is related to
the fact that τ1 (which being a batch task is CPU-
intensive) starts to consume its future reserved time,
because there is no other task ready for execution.
When τ2 is activated, τ1 has consumed much of its
future reserved time, therefore it cannot use the pro-
cessor until the task τ2 “catches up”.

A second problem presented by a CBS when serv-
ing non real-time tasks occurs in presence of servers
with different periods. In this case, the server period
can be thought as a measure of the “granularity” of
the resource allocation — i.e., how often a task (or
an application) is allocated the reserved budget. So,
a naive user might tend to use “short period” reser-
vations to serve batch or interactive tasks that need
to execute often. However, when the difference be-
tween reservations’ periods is too large it often hap-
pens that “short period” servers are not scheduled of-
ten enough, causing unexpected execution patterns.
Again, this problem is related to the soft reservation
rule of the CBS. When a “short period” reservation
is depleted, the scheduling deadline is postponed but
it might still remain the shortest one. Hence, the
served task continues to execute for several server
instances, as if it was served by a reservation with
a longer period. In the following, we will refer to
this problem as the “Short Period” problem. As an
example of the short period problem, consider two
batch tasks τ1 and τ2 served by two servers with
Q2 = 10.5Q1 and T2 = 10.5T1. The schedule pro-
duced by the CBS algorithm is shown in Figure 2
(note that τ1 does not execute every T1 time units).

Q = 10.5 Q

T = 10.5 T
τ

τ Q

T

1

12

2

1

1

1

2

FIGURE 2: The “Short Period” problem.

The issues shown above are particularly critical
for the global scheduler in hierarchical scheduling
systems [8], consisting of two levels of schedulers.
In such systems, a global scheduler can select a sec-
ond level scheduler (also known as local scheduler),
which in turn selects the task to execute. When a
reservation-based scheduler is used as a global sched-
uler, it is expected to provide temporal isolation be-
tween groups of tasks (so that a group of tasks can
be guaranteed independently from the other ones).
However, if a server allows the served tasks to con-
sume their reserved time in advance, this property is
broken.

For example, consider a server used as a global
scheduler for an application with two real-time tasks
τa
1 and τb

1 , the first one with a short deadline and the
second one with a large deadline (and large execution
requirement). In order to ensure that τa

1 meets all
deadlines, the global scheduler is based on a reser-
vation with a short period (less than the task dead-
line). However, if the reservation mechanism allows
τb
1 to consume the reserved time in advance, it can

postpone the scheduling deadline by a large amount
before τa

1 arrival. So, when τa
1 activates the server

deadline is very large and the server may not allow its
tasks to execute for a long interval of time, causing
a potential deadline miss for τa

1 .

All these examples show that even if the CBS
guarantee (see Property 1) is respected, the sched-
ule is not “fair enough” (if τ is activated at time t0
and is continuously active in [t, kTi], it is not guar-
anteed that in [(k− 1)Ti, kTi] the task executes for a
time Qi). This issue is similar to the problem of the
fairness of the WFQ algorithm, highlighted in [7, 6]
— similarly to WFQ, whose primary concern are the
virtual finishing times, the original CBS algorithm is
only concerned with deadlines, but allows the task
to execute “too early”. As noted by Bennet and
Zhang [7], there are cases (for example, hierarchi-
cal scheduling) in which a better fairness is needed.
Such an issue was addressed by the WF2Q algorithm
by introducing the worst-case fairness property [6].
Similarly, we introduce the worst-case fairness property
for reservations.

Property 2 A reservation-based scheduling algo-
rithm is said to be worst-case fair if a server Si with
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budget qi at time t is guaranteed to consume its bud-
get before t+Ti (that is, if the server budget at time t

is qi then the served task is guaranteed the possibility
of executing for at least qi before t + Ti).

It can be shown that Property 2 is equivalent to
worst-case fairness as defined by Bennet and Zhang:
informally speaking, if a server is guaranteed to con-
sume its budget in a time Ti, then the served task can
execute for Qi time units every Ti, and this permits
to bound the job finishing time.

The “Greedy Task” problem shows that the orig-
inal CBS algorithm is not worst-case fair because, for
example, server S1 in Figure 1 has q1 > 0 at time
t2 = t1 + 4ms, but can consume it only at time
t1+13ms (similarly, in Figure 2 server S1 has budget
q1 = Q1 at time 5T1, but cannot consume it before
5T1 + Q2).

To avoid the two problems presented above, the
Property 2 (worst-case fairness) is required (in addition
to Property 1) when serving non real-time tasks.

It is important to point out that the original CBS
algorithm has been designed to serve real-time tasks,
which are characterised by the model defined in Sec-
tion 2.1. In this case, it is possible to compute the
server parameters Qi and Ti so that the task can re-
ceive a predictable QoS [3], and the “Greedy Task”
and the “Short Period” problems are not a concern.
This is the reason why such problems were observed
only when the CBS has been implemented in the
Linux kernel and their relevance was only understood
when the CBS algorithm has been used to schedule
generic non real-time (interactive and batch) tasks,
which can easily act as greedy.

3.2 HGRUB

It is possible to note that worst-case fairness can be
easily provided by depleting a reservation when its
budget arrives to 0, and postponing the replenish-
ment to a later time - generally corresponding with
the scheduling deadline. Since this is the essence of
the hard reservation behaviour, it might be natural
to think that a generic algorithm based on hard reser-
vations is adequate for serving non real-time tasks.
However, a straightforward implementation of the
hard reservation behaviour can make the scheduling
algorithm non-work-conserving (more specifically, it
may happen that all active tasks are suspended wait-
ing for recharging their server budgets, and the CPU
is idle). Therefore this approach has an adverse ef-
fect both on the throughput of batch tasks and the
responsiveness of interactive tasks failing to comply
with requirement 4.

The solution to this efficiency issue can be found
by looking at the “Greedy Task” problem, which

seems to indicate that some kind of reclaiming mech-
anism can avoid deadline aging (helping to cope
with tasks that consume their “future” reserved CPU
time). That is to say, an algorithm performing CPU
reclaiming is very efficient (it never leaves the CPU
unused when at least one task is ready for execution)
and solves the “Greedy Task” problem. However, it
is not worst-case fair. In fact, the “Short Period” prob-
lem shows that a reclaiming mechanism alone is not
enough; for example, a soft reservation behaviour re-
sults in the possibility to consume execution time “in
advance” breaks the worst-case fairness even in pres-
ence of CPU reclaiming.

Since CPU reclaiming and the hard/soft reser-
vation behaviour are orthogonal properties, they can
be combined in a scheduling algorithm; in partic-
ular, if GRUB reclaiming is combined with a hard
reservation behaviour then the resulting algorithm
(called HGRUB) is both efficient and worst-case fair.
For this reason in the rest of the paper we will focus
on HGRUB.

4 Formal HGRUB Description

This section formally describes the HGRUB Algo-
rithm, which is similar to the GRUB algorithm [9]
(which in turns is a variation of the CBS algo-
rithm [2]). Basically, HGRUB adds reclamation and
a hard reservation behaviour to the CBS, ensur-
ing at the same time that the algorithm remains
work-conserving. The HGRUB algorithm is de-
scribed based on the original CBS algorithm (see
Appendix A), by showing how the original account-
ing mechanism is modified by GRUB, and how the
enforcement mechanism is modified to implement a
hard reservation behaviour.

4.1 GRUB Reclaiming

GRUB reclaiming is implemented by introducing a
global variable Uact representing is the sum of the
bandwidth Ui = Qi

Ti

of all servers that are not inac-
tive and is updated as follows:

• At system startup, Uact is initialised to 0;

• When τi activates at time t, if qi < (ds
i − t)Ui

(the current scheduling deadline is used) Uact

is unchanged, otherwise (if a new schedul-
ing deadline is generated and the budget is
recharged) Uact = Uact + Ui;

• When τi stops (a job finishes) at time t, if
qi ≥ (ds

i − t)Ui then Uact = Uact − Ui. Oth-
erwise, Uact will be decreased by Ui later, at
time t = ds

i −
qi

Ui

6



Then, the accounting rule is modified in this way:

• While task τi executes, the server budget is de-
creased as dqi = −Uactdt (GRUB account-
ing rule)

Note that in the original GRUB paper different
server states were used to update Uact.

4.2 Hard Reservations and GRUB

The last CBS rule (enforcement rule) indicates that
the original CBS implements a soft reservation be-
haviour. If a hard reservation behaviour is desired,
the enforcement rule must be modified as follows:

• When the budget is exhausted (qi = 0), the
server is said to be depleted, and the served task
is not allowed to be scheduled until t = ds

i . At
such time, the scheduling deadline is postponed
(ds

i = ds
i + Ti) and the budget is recharged to

Qi (hard enforcement rule)

The HGRUB algorithm combines the hard en-
forcement rule and the GRUB accounting rule to
obtain the worst-case fairness property. Since this
combination risks to make the algorithm non-work-
conserving, a second global variable R, indicating the
residual budget has been added. R is updated as fol-
lows:

• When τi stops (a job finishes) at time t, if

qi ≥ (ds
i − t)Ui then R = qi −

(ds

i
−t)

Ui

This residual budget R is given to the next execut-
ing server, let it be Sj : qj = qj + R. If no server
is eligible for execution (that is, all the servers are
depleted or inactive), then:

• If there is at least a depleted server (a server
with qi = 0 that has not been replenished yet),
then it is safe to give R to the depleted server
having the earliest scheduling deadline (so, its
budget is replenished earlier than expected);

• If there are no depleted servers, then it is safe
to reset Ui to 0 discarding R.

5 Experimental Results

The effectiveness of the HGRUB algorithm, has been
tested by modifying an implementation of the CBS
scheduler in the Linux kernel [4, 17].

To minimise the amount of modifications needed
to the kernel, the CBS scheduler has been imple-
mented as a kernel module. In this way, the schedul-
ing module can be inserted into (and removed from)

the kernel at runtime, and most of the code is inde-
pendent from the kernel version (for example, port-
ing the scheduler from the 2.4 kernel to 2.6 has been
quite simple). The scheduling module works by in-
tercepting job arrivals (i.e., task unblockings) and
job terminations (i.e., task blockings), and is noti-
fied whenever a task is created or destroyed.

Some experiments showing the overhead intro-
duced by the scheduler and the efficiency of its im-
plementation are already presented in [4]; this paper
only presents experiments showing the differences be-
tween the schedules produced by various CBS-based
algorithms. To do this, the CBS scheduler has been
extended to implement hard reservations, GRUB re-
claiming and the HGRUB algorithm.

5.1 Schedule Correctness

First of all, a set of experiments has been run to
verify the correctness of the HGRUB algorithm. In
particular, this set of experiments has reproduced
the “Greedy Task” and the “Short Period” problems,
to see how the HGRUB algorithm copes with them.
These experiments have been performed by using a
measurement technique similar to the one used by
Hourglass [16].
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FIGURE 3: Pathological schedule produced
by CBS with the “Greedy Task” problem.

The “Greedy Task” problem, shown in Figure 1,
can be simply avoided by using the GRUB reclaim-
ing mechanism. This has been shown by using two
batch tasks τ1 and τ2 served by two identical CBSs
with parameters (100ms, 500ms), and by activating
τ2 2 seconds after τ1. The schedule produced by the
CBS scheduler is shown in Figure 3, whereas Figure 4
shows the schedule generated by GRUB. By compar-
ing the two figures it is possible to see that GRUB
avoids the problem by allocating to τ1 the amount
of CPU bandwidth not used and not reserved during
the first two seconds. In this way, when τ1 is the only
active task, its scheduling deadline is not postponed
too much, and when τ2 activates the two scheduling
deadlines are comparable.
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FIGURE 4: CPU reclaiming performed by
GRUB on the “Greedy Task” problem.

7



Also the use of a hard reservation technique could
alleviate the “Greedy Task” problem, but in this case
τ1 would execute for less time (see Figure 5).
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FIGURE 5: CPU reclaiming performed by
hard CBS on the “Greedy Task” problem.
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FIGURE 6: The “Short Period” problem
with CBS.

The simple usage of a reclaiming mechanism, how-
ever, does not solve the “Short Period” problem, as
shown by running two batch tasks τ1 and τ2 served
by two servers with parameters (30ms, 150ms) and
(400ms, 900ms). The schedule produced by the CBS
is shown in Figure 6, whereas Figure 7 shows the
schedule produced by GRUB. Note that using both
algorithms the distances between continuous “blocks
of execution” for task τ1 (about 400ms for the CBS
and 600ms for GRUB) is much bigger than the pe-
riod of server S1 (i.e., 150ms).
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FIGURE 7: The “Short Period” problem
with GRUB.

A great improvement can be achieved by using
a hard reservation behaviour, as shown in Figure 8.
Again, the hard algorithm is less efficient, and the
tasks execute for less time than in the previous cases.
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FIGURE 8: The “Short Period” problem
with hard CBS.

The best solution, thus, is to combine the
GRUB reclaiming with the hard reservation be-
haviour, as done by HGRUB. The schedule produced

by HGRUB is shown in Figure 9.
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FIGURE 9: The “Short Period” problem
with HGRUB.

5.2 Real-Time Performance

In a second set of experiments, the various schedul-
ing algorithms have been evaluated in terms of soft
and hard real-time performance. This goal has been
achieved by running a task set composed by some
soft and hard real-time tasks, and by measuring the
Cumulative Distribution Function (CDF) C(x) =
P{fi < x} of the finishing times fi, representing the
probability to finish a job within a specified time.
All the tasks were characterised by randomly vary-
ing execution times and periods, and the reservation
parameters were assigned to guarantee the respect
of hard deadlines (so, for hard tasks Qi > Ci and
Ti < min{ri,j+1 − ri,j}). As a first check, it has
been verified that all the hard tasks respected all
their deadlines: Figure 10 shows the CDF of the fin-
ishing times for an hard task with relative deadline
Di = 300ms, and it shows that for every considered
scheduling algorithm P{fi < Di} = 1 (as expected).
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FIGURE 10: CDF of the finishing times
for a hard real-time task.
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FIGURE 11: CDF of the finishing times
for a soft real-time task.

Then, the finishing times CDF for a soft task has
been measured, to show the effectiveness of the re-
claiming mechanism. As can be noticed from Fig-
ure 11, the probability of missing the soft deadline
Di = 200 is 0 when GRUB or HGRUB is used, is
about 0.025 when the CBS is used, and grows to
more than 0.7 for the hard CBS. This result clearly
shows that hard CBS is not a viable solution from
the efficiency point of view.

5.3 Fairness and Throughput

The previous experiments show that the hard and
soft real-time performance of GRUB and HGRUB
are comparable; in fact the advantages of HGRUB
are only visible when serving non-real-time tasks.
Such advantages are highlighted in a third set of ex-
periments, in which a non-real-time task has been
added to the previous task set (which was composed
by real-time tasks only).

20 20

35

20 20

5

FIGURE 12: Maximum and minimum the-
oretical time needed do serve a 5ms with a
hard (5, 20) reservation.

In particular, the task is cyclically measuring the
time needed for executing for 5ms, and is attached to
a reservation (Q = 5ms, T = 20ms). When using a
CBS (even with GRUB reclaiming) to serve the non
real-time task, execution time can be consumed in
advance, so the time needed to execute 5ms ranges
from 5ms to a very large time (due to deadline ag-
ing, or to the “Short Period” problem). On the other
hand, when using a hard reservation behaviour the
time needed to execute 5ms can range from 5ms to
35ms (see Figure 12).
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FIGURE 13: CDF of the time needed to
serve 5ms in a non real-time task served by a
(5, 20) reservation.

The CDF of the time needed for executing 5ms in
the non real-time task has been measured, and is
shown in Figure 13. Notice that (as expected) the
CDF for CBS and GRUB arrives to 1 after a much
longer time.

6 Conclusions and future work

The paper described some problems encountered
when using CPU reservations in the Linux kernel,
that have been solved by adding a reclaiming mech-
anism and hard reservation behaviour to the schedul-
ing algorithm. The new algorithm (called HGRUB)
proved to be very effective in a wide range of situa-
tions, like serving both real-time and non-real-time
tasks and hierarchical applications.

The HGRUB algorithm has been implemented
and tested in the Linux kernel, and a prototype is
freely available3. As future work, we plan to extend
the current implementation to support resource shar-
ing through the BWI protocol, to better integrate
with the preemtp-RT patches [1] (the scheduler has
been adapted to 2.6.21-rc5-rt4, and this configura-
tion is currently under test), and to compare the

3distributed under the GPL; contact Luca Abeni for obtaining a copy of the scheduler.
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reservation approach with the new CFS scheduler
provided by Linux.
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A The Basic CBS

As already explained in Section 2.3, every CBS-based
algorithm works by maintaining two variables for ev-
ery server Si: the server remaining budget qi (used
for accounting) and the current scheduling deadline
ds

i (used for assigning a priority to the scheduled task
and for enforcement). Such variables are updated as
follows:

• When a server is created, qi and ds
i are ini-

tialised to 0;

• When τi activates (job arrival) at time t, the
scheduler checks if the current scheduling dead-
line can be used (if qi < (ds

i − t)Ui), otherwise
a new scheduling deadline ds

i = t + Ti is gener-
ated and qi is recharged to Qi;

• While task τi executes, the server budget is de-
creased as dqi = −dt (accounting rule);

• When the budget is exhausted (qi = 0), it is
recharged to Qi and the scheduling deadline is
postponed (ds

i = ds
i +Ti) (enforcement rule)

The algorithm can handle an arbitrary number
of servers, given that

∑

i Ui ≤ 1.
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