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ABSTRACT

The recent changes made in the Linux kernel aim at achieving

better energy efficiency through a tighter integration between the

CPU scheduler and the frequency-scaling subsystem. However, in

the current implementation, the frequency scaling mechanism is

used only when there are no real-time tasks in execution. This pa-

per shows how the deadline scheduler and the cpufreq subsystem

can be extended to relax this constraint and implement an energy-

aware real-time scheduling algorithm. In particular, we describe

the design issues encountered when implementing the GRUB-PA

algorithm on a real operating system like Linux. A set of exper-

imental results on a multi-core ARM platform validate the effec-

tiveness of the proposed implementation.
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1 INTRODUCTION

During the recent years, the ICT industry has faced a growing pres-

sure for increasing the processing capabilities of mobile devices

(like smartphones or IoT nodes) and, at the same time, extend-

ing (or, at least, not reducing) their autonomy. The battery tech-

nology on this kind of devices, in fact, has evolved at a too slow

pace for being capable of satisfying the processing needs posed

by next-generation applications. To make things harder, on these

devices there is often the additional requirement of avoiding the

mechanical cooling systems typically used for dissipating the heat

produced by a powerful processing unit (because they could easily

break and, in any case, would increase the overall size and energy

consumption).
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Dynamic Voltage and Frequency Scaling (DVFS) is an effective

technique for reducing the power-consumption of CPUs by dy-

namically lowering their frequency and voltage. An energy-aware

scheduler running on aGeneral-PurposeOperating System (GPOS)

can exploit this mechanism to select both the task to be executed

and the CPU’s Operating Performance Point (OPP), aiming at re-

ducing the overall energy consumption.

The DVFS technique can be effectively used also for real-time

tasks, with the objective of setting the CPU at the lowest frequency

that allows to respect the real-time constraints (e.g., a specified

amount of computation before task’s deadline). Several energy-

aware scheduling algorithms have been proposed in the real-time

literature during the years. Pillai and Shin [16] proposed the RT-

DVS family of algorithms to exploit the slack time. Aydin et al. [7]

proposed the DRA algorithms for reclaiming the spare time on Ear-

liest Deadline First (EDF). A power-aware algorithm for EDF sched-

uling has been proposed by Zhu and Mueller [24] as well. Similar

techniques have been proposed by Saewong and Rajkumar [21] in

the context of fixed priority scheduling. All these techniques as-

sume hard real-time periodic task sets and therefore do not fit the

scenario of GPOS kernels like Linux.

Some algorithms have been proposed for soft real-time tasks too.

For example, Lorch and Smith addressed variable voltage schedul-

ing of tasks with soft deadlines in [14]. Pouwelse et al. [17, 18] pre-

sented a study of power consumption and power-aware scheduling

applied to multimedia streaming. Kumar et al. [11] proposed a pre-

diction mechanism for fixed-priority scheduling of soft periodic

tasks. However, these techniques are based on heuristics and can-

not provide guarantees to hard real-time tasks. Qadi et al. [19] pre-

sented the DVSST algorithm that reclaims the unused bandwidth

of sporadic hard real-time tasks.

The GRUB-PA algorithm [23] supports periodic, sporadic and

aperiodic tasks and has been shown to outperformmost of themen-

tioned algorithms. Moreover, it can be used to schedule both hard

and soft real-time tasks. Hence, it looks like the best candidate to

implement DVFS in general purpose kernels such as Linux. This

paper presents and evaluates the implementation of a new DVFS

mechanism for the Linux kernel based on such algorithm.

The rest of the paper is organized as follows. Section 2 illustrates

which of the existing Linux components our implementation re-

lies on. Section 3 outlines the general approach and its theoretical

foundations. Section 4 describes the implementation details. Sec-

tion 5 provides a set of experimental results on a real embedded

hardware. Finally, Section 6 draws the conclusions.

2 BACKGROUND

This section illustrates the “building blocks“ that we have used

for implementing the proposed energy-aware real-time scheduler.
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2.1 Deadline scheduling

Since release 2.6.23, Linux has a modular scheduling framework

consisting of a main core and a set of scheduling classes, each en-

capsulating a specific scheduling policy. The binding between each

policy and the related scheduler is done through a set of hooks (i.e.,

function pointers) provided by each scheduling class and called by

the core scheduler.

SCHED_DEADLINE [12] is a scheduling policy suitable for real-

time applications, available by default since the 3.14 kernel release.

It implements the Constant Bandwidth Server (CBS) [2] CPU reser-

vation algorithm over an Earliest Deadline First (EDF) [13] sched-

uler. Each real-time task is assigned a “reservation” (Qi ,Ti ), mean-

ing that the task needs to execute at least for the “runtime”Qi
1 ev-

ery period of time Ti . The ratio Qi/Ti is called “utilization” of the

task. Thanks to the EDF optimality, if the sum of the utilizations

of the tasks on a CPU does not exceed 100% (i.e.
∑ Qi

Ti
≤ 1), then

the tasks are guaranteed to respect their execution constraints.

If a task tries to execute for more thanQi in a periodTi , then it

gets throttled (i.e., not selected for execution) until the end of the

current reservation period. This effect is achieved by using three

mechanisms:

• accounting: each task is associated to a current runtime, that

is decreased when the task executes. In particular, if the task

executes for a time δ , its current runtime is decreased by δ .

• enforcement: when the current runtime of a task arrives to

0, the task is throttled and cannot be scheduled until the

current runtime is replenished.

• replenishment: at the end of a reservation period (when the

time becomes equal to the scheduling deadline of the task),

the current runtime of the task is replenished to the maxi-

mum valueQi (and the scheduling deadline is postponed by

Ti ).

In this way, each task is constrained to not use more than its

reserved CPU share — i.e., a maximum of Qi every Ti units of

time. This behavior (known as “hard reservation” [20]) has been

designed to avoid the “deadline aging” phenomenon [5, 22], where

a task consumes its future reservation due to other real-time tasks

not ready to run. Moreover, the hard reservation behaviour avoids

the starvation of lower priority tasks due to misbehaving real-time

tasks (i.e., isolation property). On the other hand, however, it makes

the scheduler not work conserving, because a real-time task might

be throttled even in case of idle system.

2.2 Reclaiming

Since the recent 4.13 kernel release, a new “CPU reclaiming” fea-

ture, based on theGreedy Reclamation ofUnused Bandwidth (GRUB)

algorithm [3, 10], has been added to SCHED_DEADLINE. By intro-

ducing the reclaiming feature, GRUB solves thework conserving is-

sue previously illustrated. This feature is obtained by keeping track

of the CPU utilization U act of the tasks that are active on each

CPU core, and by using this information to modify the accounting

rule. Considering the task τi served by a reservation (Qi , Pi ), the

active utilization is immediately increased by Ui = Qi /Pi when τi
wakes up (i.e., it is added to the runqueue of the scheduler). When

1Notice that the Linux “runtime” is often called “budget” in the real-time literature.
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Figure 1: Task state diagram in GRUB.

τi blocks, however, the active utilization cannot be immediately de-

creased, otherwise this could break the real-time guarantees (e.g., if

τi unblocks immediately later and the bandwidth has been already

reclaimed by another task). Therefore, when τi blocks, a timer is

armed to fire at the so-called “0-lag time”, when the task’s utiliza-

tion can be safely removed from U act . If τi unblocks before the

0-lag time, then the timer is cancelled. Figure 1 shows the state

transitions for a GRUB task.

The modified accounting rule defined by GRUB can be selected

per-task, by using the new SCHED_FLAG_RECLAIM flag introduced

in the user-space API. If set, this flag allows a task to explicitly

reclaim some further bandwidth (if any) unused by the other real-

time tasks. At the same time, to avoid starvation of lower prior-

ity tasks, the scheduler maintains a (configurable) margin of spare

CPU bandwidth for running non real-time tasks on fully loaded

systems.

The GRUB algorithm can be divided into two different parts: a

set of rules for identifying the reclaimable bandwidth, and a set

of rules for exploiting such bandwidth. The second part is where

theGRUB andGRUB-PA algorithms differ. The original GRUB algo-

rithm reassigns the reclaimed bandwidth to let the active real-time

tasks execute for a longer time. In the GRUB-PA algorithm [23], in-

stead, the reclaimed CPU time is used to slow down the processor

(i.e., to lower the CPU frequency). The real-time tasks execute for

a longer time, but at a slower speed. The net effect is a reduction

of the CPU energy consumption still respecting the real-time guar-

antees.

The specification of the two algorithms is very similar, as GRUB-

PA only adds a couple of extensions:

• it considers the processor speed when performing the run-

time accounting;

• it sets the processor speed equal to U act .

The interested readers can refer to the original papers for an in-

depth description of the algorithms.

2.3 Frequency scaling

Cpufreq is the Linux subsystem in charge of adjusting CPU’s volt-

age and frequency. It contains a set of “governors”, each adopting a

different power management strategy (in other words, the cpufreq
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core implements the frequency scaling mechanism, while the var-

ious governors implement different policies).

The ondemand and conservative governors aim at dynamically

adjusting the CPU frequency based on the system load. However,

they have two issues: their goal is not formally specified (to cor-

rectly schedule real-time tasks, instead, it is important to formal-

ize the invariants that the DVFS mechanism has to respect) and

they have poor performance due to a coarse integration with the

CPU scheduler. To address the second issue, the Linux kernel in-

troduced the schedutil governor (since version 4.7), bridging the

cpufreq subsystem with the CPU scheduler. Load estimation for

non real-time tasks is achieved through the scheduler’s Per-Entity

Load Tracking (PELT) mechanism, which gives more importance

to recent load contributions by using a geometric series.

Unfortunately, due to the first issue mentioned above, the cur-

rent schedutil governor performsDVFS only for the SCHED_ OTHER

tasks (managed by the CFS scheduling class) while real-time tasks

(SCHED_FIFO, SCHED_RR and SCHED_DEADLINE) are always run at

the highest CPU frequency.

3 APPROACH

In this paper, the schedutil governor has been improved to allow

some energy saving when real-time tasks are scheduled. To do this,

first of all it is important to precisely define the goal of the DVFS

mechanism. This requires some basic definitions about real-time

tasks: a real-time task τi can be seen as a sequence of jobs (or in-

stances) Ji, j , with each job Ji, j activating at time ri, j and executing

for a time ci, j before the task blocks waiting for the next job. If a

job Ji, j finishes before time ri, j + Di (with Di relative deadline of

the task), then its deadline is respected.

While setting the CPU at the maximum frequency is reasonable

for SCHED_FIFO and SCHED_RR tasks (because their CPU require-

ments are not known in advance), a smarter approach can be taken

when scheduling SCHED_DEADLINE tasks, whose CPU demand is

specified explicitly in terms of runtime and period. In particular,

the active utilizationU act , already tracked by theGRUB implemen-

tation in the Linux kernel, represents the fraction of CPU time used

by the SCHED_DEADLINE tasks currently running on a CPU core.

The goal of scheduler and DVFS mechanism is to respect the

tasks’ deadlines. If a real-time task τi is scheduled by SCHED_DEADLINE

withQi ≥ maxj {ci, j },Ti ≤ Di ∪Ti ≤ minj {ri, j+1−ri, j } and some

admission test is respected2, then the task is guaranteed to respect

all of its deadlines. Hence, the new DVFS mechanism must be de-

fined not to break this guarantee.

Considering a single CPU core, if its frequency is set to the max-

imum value fmax , then the core will not execute SCHED_DEADLINE

tasks for a fraction (1 −U act ) of the time. Slowing down the CPU

frequency, the jobs’ execution times ci, j will increase proportion-

ally; hence all the runtimesQi have to be increased proportionally

in order not to miss any deadline. As a consequence, the amount

of time not used by SCHED_DEADLINE tasks (which can be seen as

an “idle time”3) will decrease. If the CPU frequency f is higher

2The admission test for single-processor systems is
∑
i
Qi
Ti

≤ 1. For multi-processor

systems it is more complex — for example see Section 4.2 of [4].
3Notice that the term “idle” is slightly incorrect here, because the CPU is not idle but
it is simply not executing SCHED_DEADLINE tasks.

than fmax ·U act , then it is possible to guarantee that each job of

each SCHED_DEADLINE task will be able to finish before its deadline

(that is, it will be able of receiving an amount of CPU time equal

to
ci, j ·f

max

f
before the end of the reservation period). Hence, it

is possible to save some energy by setting the CPU frequency to

f = fmax ·U act , as requested by GRUB-PA.

Again, remember that since lowering the CPU frequency slows

down the performance, the tasks will need more time to do their

work (in other words, job Ji, j will execute for an amount of time
ci, j ·f

max

f
instead of ci, j ). For this reason, the runtimes have to be

rescaled accordingly. This result can be achieved by modifying the

accounting rule: when a task executes for a time δ , its current run-

time is not decreased by δ , but by δ · fmax /f (where f is the cur-

rent frequency). If f = fmax · U act then the current runtime is

decreased by δ · U act , as done by GRUB (and by the new reclaim-

ing mechanism set by SCHED_FLAG_RECLAIM).

Note that, in line with the other DVFS mechanisms available

in Linux, we have assumed the speed of the executed task to be

proportional to the CPU frequency. Moreover, it is important to

point out that changing the frequency of the cores affects their pro-

cessing speed, but not the latency of the memory accesses. More

complex models can be elaborated to take into account both the

processing and the memory access speeds.

Since real CPUs do not allow to set their operating frequencies

to arbitrary values (but permit to select only a limited number of

discrete values), the cpufreq subsystem selects the minimum pos-

sible frequency that is higher than fmax · U act . Additionally, it

automatically discards requests of setting a CPU frequency equal

to the one already in use.

Summing up, the DVFS mechanism proposed in this paper, in-

spired by GRUB-PA, scales the CPU frequency based on the active

utilization U act . This result has been obtained by modifying the

schedutil governor to use U act as an estimation of the CPU load:

when considering only SCHED_DEADLINE tasks, the resulting fre-

quency scaling is identical to the one obtained by using GRUB-PA.

4 DESIGN AND IMPLEMENTATION

While implementing the schedutil modifications described in

Section 3, the theoretical GRUB-PA algorithm has been slightly

modified to address some implementation issues as described in

this section.

4.1 Tracking the Utilization

Since the Linux kernel supports multi-processor (and multi-core)

systems, the reclaiming mechanism implemented on top of SCHED_

DEADLINE is based on the M-GRUB [4] algorithm, which extends

the original GRUB algorithm to deal with multiple CPUs. Origi-

nally, GRUB [10] and GRUB-PA [23], in fact, were designed for

single-core systems, and thus used a single variable to keep track

of the overall active utilization (given by all ActiveContending and

ActiveNonContending tasks). The amount of reclaimable CPU time

was computed based on the difference between the maximumCPU

utilization (i.e., 100%) and such variable. The M-GRUB implemen-

tation that has been recently merged in the Linux kernel, instead,

tracks the active utilization per-runqueue (that is, per CPU core).
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Moreover, M-GRUB needs to explicitly track the “inactive utiliza-

tion” (defined as the difference between the utilization of all the

tasks assigned to a CPU core and all the “active” tasks on the core).

Hence, the kernel keeps track of two different utilizations per run-

queue: the original “active” utilization and an additional “total” uti-

lization (taking into account also any non-active task). The inactive

utilization is computed as the difference between these two values.

One of the first design choices when implementing GRUB-PA

has therefore concerned which of these two utilizations to use for

frequency scaling. Suppose that the jobs of a real-time task τi with

an utilization Ui = Qi /Ti = 70% finish after using a much lower

runtime. Setting the CPU frequency based on the total runqueue

utilization (i.e., 70% in the previous example) is a more conserva-

tive approach, that has the drawback of a poor energy efficiency.

With such an approach, in fact, a real-time task contributes to the

CPU frequency even when blocked. On the other hand, it has the

benefit of a lower number of frequency switches (because the fre-

quency is changed only at task creation and destruction). Consid-

ering that the WCET is often much higher than the average exe-

cution time, and aiming at reaching a better energy performance,

we have rather preferred a more aggressive approach. We have

followed the GRUB-PA algorithm more strictly by relying on the

active bandwidth. This approach has the advantage of further re-

ducing the CPU frequency whenever a blocked task enters the in-

active state.

4.2 Runtime Accounting

The frequency set by the schedutil governor has of course to take

into account also the processing needs of the other scheduling

classes. This has been easily achieved by extending the existing

data structures to keep track of the load contributions of the vari-

ous scheduling classes.

In the original GRUB-PA algorithm, the accounting operations

(i.e. decreasing the remaining runtime of the executing task) were

performed assuming that the CPU frequency had been set only

based on the active utilization of SCHED_DEADLINE tasks. Since the

CPU frequency can be different from fmax ·U act (due to the load

contributions of the other scheduling classes), the accountingmust

be performed considering the actual frequency, and not the value

of U act (as originally done by GRUB and GRUB-PA). In this way,

the current runtime of the task is decreased based on how much

processing power (i.e., CPU frequency) has been actually given to

it.

A more critical issue concerns the other scheduling classes be-

ing free of updating their own load contributions (thus affecting

the CPU frequency) without informing the deadline scheduler of

such changes. This means that when performing the runtime ac-

counting, the real-time task could have been executed at a fre-

quency different than the one currently used. We had three pos-

sible options to deal with these asynchronous frequency changes:

(1) Add a notification mechanism to inform the deadline sched-

uler about every change of the CPU frequency made by

the other scheduling classes. Despite the precise account-

ing, however, this approach would have introduced a large

amount of unwanted overhead.

(2) Prevent the other scheduling classes from changing the CPU

frequency when there is some real-time load. Even if viable,

this approach would be seldom accepted by the kernel com-

munity (who traditionally is more concerned with energy

efficiency rather than precise real-time execution).

(3) Use the current value of the CPU frequency at the moment

of the accounting, regardless of any frequency change that

may have occurred since the last accounting operation. This

— of course slightly inaccurate — approach is the one that

has been suggested by the kernel community.

Currently, a reliable information about the actual CPU frequency

is available to the schedutil governor only onARMplatforms (through

a patch recently merged into themainline kernel). This means that,

at the current state, the proposed DVFS mechanism can work on

non-ARM platforms only for tasks explicitly requesting CPU re-

claiming (i.e., using the SCHED_FLAG_RECLAIM flag). Note, however,

that ARM-based platforms represent the vast majority of modern

mobile devices.

4.3 Kernel thread

The schedutil governor uses a worker kernel thread for driving

frequency changes on platforms that do not have fast switching

capabilities. In the mainline kernel, this thread is currently sched-

uled with the SCHED_FIFO policy and a priority equal to

(MAX_USER_RT_PRIO / 2). However, this kernel thread must have

higher priority than all the SCHED_DEADLINE tasks, otherwise a

CPU-hungry taskwould be able of delaying the frequency switches.

Hence, as a temporary workaround, the priority of this task has

been raised to the maximum possible value4.

The kernel community expressed a bit of concern due to un-

wanted scheduling behaviors that may happen when mixing such

a high priority kernel thread with priority inheritance or similar

resource sharing protocols. However, these are considered corner

cases, and this temporary solution seems to be accepted waiting

for a more general approach.

5 EXPERIMENTAL EVALUATION

To validate the proposed scheduler we have performed a set of

extensive tests using a Freescale Sabre board based on a quad-core

Cortex-A9 ARM SoC that can run at three different frequencies:

396 MHz, 792 MHz and 996 MHz. The real-time load has been

generated through the rt-app framework [1], implementing one

or more real-time tasks composed by periodic jobs with a fixed

execution time, run through the ARM’s LISA toolkit [6]. To have

consistent data, all the provided values were averaged over 10 con-

secutive runs.

The energy consumption has been measured through the Bayli-

bre’s ACME Cape board [8] integrated with LISA. We highlight the

fact that the measured values are related to the energy consumed

by the whole embedded board, not just the SoC.

The first set of experiments consisted in a periodic task with pe-

riod 100ms and execution time C , scheduled by SCHED_DEADLINE

4Technically, it has been transformed into a special SCHED_DEADLINE task without
the traditional reservation values (i.e., runtime and period) and thus executed for all
the needed time.
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Figure 2: Energy consumption of test1 (one task, runtime

90%, period 100 msec).

with a runtime Q such that C = 0.9Q . Multiple experiments have

been performed, with the runtime Q ranging from 10ms to 100ms

(and hence C ranging from 9ms to 90ms). The code base has been

based on the “tip” repository [15], which contains the next ver-

sion of the scheduler core. The results in terms of both energy con-

sumption and deadline misses have been measured for the current

schedutil governor, for the performance governor (which keeps

the CPU always at the maximum frequency) and for the proposed

modification of schedutil implementing the GRUB-PA algorithm.

Figure 2 shows the average energy consumption measured by the

energy meter for different values of the reservation. The registered

percentage of deadline misses is summarized in Table 1. Such fig-

ures show that the performance governor has the lowest amount

of deadline misses, but also the poorest energy efficiency. This be-

havior was of course expected. A more interesting comparison is

between the current schedutil and the proposed GRUB-PA imple-

mentation. GRUB-PA, in fact, allows to considerably reduce the

energy consumption when the bandwidth is lower than 70% and

especially to significantly improve the real-time performance for

all the values of the bandwidth. In particular, our implementation

allows to have real-time performance similar to the performance

governor without a huge loss in terms of energy efficiency.

A second set of experiments further stressed the deadline sched-

uler by setting the execution timeC of the jobs exactly equal to run-

time Q of the the reservation serving the task. The experimental

results, shown in Figure 3 and Figure 4, respectively, confirm the

behavior already illustrated. Also note that all schedulers (includ-

ing the performance governor, which does not perform frequency

scaling) showed a quite large amount of deadline misses. These fig-

ures therefore suggest to over-allocate the reservation with respect

to the actual task needs, even when using the default governors.

A third set of experiments aimed at investigating the behavior of

the scheduler when reducing the timing granularity. We have thus

reduced the task period (and the SCHED_ DEADLINE reservation

period to 10ms), with the reservation’s runtime Q ranging from

1ms to 10ms and the jobs execution timeC (equal to 0.9Q) ranging

from 0.9ms to 9ms . The results in Figure 5 show a significant gain in

Table 1: Deadline miss of test1 (one task, runtime 90%).

Resv. GRUB-PA Performance Schedutil

runtime

10% 0.1% 0.1% 33.5%

20% 0.0% 0.2% 44.2%

30% 0.1% 0.0% 38.1%

40% 0.1% 0.1% 32.2%

50% 0.0% 0.0% 47.7%

60% 0.0% 0.0% 22.4%

70% 0.0% 0.1% 14.7%

80% 0.0% 0.0% 12.9%

90% 0.1% 0.1% 9.4%

100% 0.4% 0.0% 16.6%
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Figure 3: Energy consumption of test2 (one task, runtime

100%, period 100 msec).
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Figure 5: Energy consumption of test3 (one task, runtime

90%, period 10 msec).

terms of energy efficiency. Looking at the distribution of themisses

with respect to the reservation’s utilization (reported in Table 2 and

plotted in Figure 6), we can see that GRUB-PA has a worse num-

ber ofmisses than the current schedutil governor only for values of

the reservation bandwidth higher than 90%; the default schedutil

governor, instead, presents a non-negligible percentage of misses

across the whole range of values. Again, the average percentage of

misses is lower using GRUB-PA than the governor currently avail-

able in the mainline kernel.

The difference between the theoretical GRUB-PA behavior (it

should cause 0 deadline misses) and the actual behavior (notice-

able deadline miss percentage for utilization > 50%) is due to the

fact that the physical CPU needs some time to switch the frequency

(on the board used for the experiments, it is about 1ms). This can

be accounted for by increasing the SCHED_DEADLINE runtime used

for scheduling the task: if the job execution time is C , the runtime

has to be set to Q = C + ϵ , where ϵ is the frequency switch time.

Of course, this pessimistic assignment of the scheduling parame-

ters will admit less SCHED_DEADLINE tasks in the system (for ex-

ample, if ϵ = 3ms a task with job execution time C = 8ms and

period P = 10ms will be rejected); on the other hand, it allows to

respect more deadlines (making the GRUB-PA performance com-

parable with the ones of the performance governor for what con-

cerns deadlinemisses). Some additional experiments confirmed the

effectiveness of this approach.

The next sets of experiments aimed at investigating the perfor-

mance when increasing the number of real-time tasks. The fourth

test run four SCHED_DEADLINE tasks, equal to the number of the

available cores. The four tasks, encapsulated in different reserva-

tions, had a period of 100ms and execution time equal to 90% of

their reservation’s runtime, similarly to the first test. The experi-

mental results, shown in Figure 7 and Table 3, confirm the behav-

ior already illustrated. Additionally, we experienced a deadlock of

the target using the schedutil governor and an utilization equal to

100%.

Finally, the fifth set of experiments aimed at investigating the

behavior of the scheduler with generic tasksets (composed by an

Table 2: Deadline misses of test3 (one task, runtime 90%, pe-

riod 10 msec).

Resv. GRUB-PA Performance Schedutil

runtime

10% 0.4% 0.1% 19.2%

20% 0.1% 0.1% 17.1%

30% 0.1% 0.1% 13.8%

40% 0.4% 0.1% 13.3%

50% 0.7% 0.1% 15.8%

60% 2.1% 0.1% 8.4%

70% 2.6% 0.1% 11.4%

80% 3.6% 0.1% 14.2%

90% 52.6% 0.1% 13.6%

100% 55.4% 0.2% 33.3%
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Figure 6: Deadlinemisses of test3 (one task, runtime 90%, pe-

riod 10 msec).
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Figure 7: Energy consumption of test4 (four tasks, runtime

90%, period 100 msec).
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Table 3: Deadline misses of test4 (four tasks, runtime 90%,

period 100 msec).

Resv. GRUB-PA Performance Schedutil

runtime

10% 0.1% 0.1% 40.3%

20% 0.2% 0.1% 40.1%

30% 0.9% 0.1% 40.2%

40% 0.2% 0.1% 24.0%

50% 0.3% 0.1% 17.6%

60% 0.6% 0.2% 15.7%

70% 0.4% 0.3% 8.9%

80% 0.5% 0.6% 10.8%

90% 0.5% 0.5% 7.6%

100% 0.7% 0.5% N/A
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Figure 8: Energy consumption of test5 (eight tasks, runtime

90%).

even higher amount of real-time tasks). We have therefore gener-

ated sets of eight reservations with heterogeneous values of run-

time and period, using the Randfixedsum algorithm [9]. Each reser-

vation has been used to serve a real-time task with a runtime equal

to 90% of its reservation’s runtime. The measured values averaged

over 10 consecutive runs with different sets of reservations are

shown in Figure 8 and Figure 9. Several patterns can be observed

in these figures:

• In terms of energy efficiency, the proposed scheduler does

not perform as well as the current schedutil governor (even

if still better than the performance governor).

• The real-time performance, however, was significantly im-

proved, as the default governor had a high percentage of

deadline misses even for low real-time loads.

• For very high values of the reservations’ bandwidth, all the

schedulers tend to show almost the same amount of dead-

line misses.

 0

 20

 40

 60

 80

 100

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

D
ea

dl
in

e 
m

is
se

s 
(%

)

Total reservations’ bandwidth

GRUB-PA
Performance

Schedutil

Figure 9: Deadlinemisses of test5 (eight tasks, runtime 90%).

6 CONCLUSIONS

In this paper we have described an implementation of theGRUB-

PA energy-aware real-time scheduling algorithm in the Linux ker-

nel, illustrating the design issues and themain choices thatwe have

faced when implementing a theoretical scheduling algorithm in a

real operating system.

The experimental results measured on a real multi-core ARM

platform have shown the limits in terms of real-time performance

of the schedutil governor currently available in the Linux kernel.

They also confirmed that the proposed approach allows real-time

performance similar to the performance governor but with a lower

energy consumption.

The next step will focus on testing the scheduler on more com-

plex platforms (e.g., theARMbig.LITTLE architecture) with a higher

number of OPPs.
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