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SUMMARY

During the last decade, there has been a considerable interest in using Linux in real-time systems, especially
for industrial control. The simple and elegant design of Linux guarantees reliability and very good perfor-
mance, while its open-source license allows to modify and change the source code according to the user
needs. However, Linux has been designed to be a general-purpose operating system. Therefore, it presents
some issues like unpredictable latencies and limited support for real-time scheduling. In this paper, we
present our experience in the design and implementation of the real-time scheduler that has been recently
included in the Linux kernel. The scheduler is based on the Resource Reservation paradigm, which allows to
enforce temporal isolation between the running tasks. We describe the genesis of the project, the challenges
we have encountered, the implementation details and the API offered to the programmers. Then, we show
the experimental results measured on a real hardware. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Linux is a full-featured operating system (OS) kernel, originally designed to be used in server or
desktop environments. Since then, Linux has evolved and grown to be used in almost all computer
areas — among others, embedded systems and supercomputers. Thanks to its high modularity and
scalability, in fact, Linux can run either on a small microcontroller and on a powerful machine with
thousands of CPUs.

In the last years, there has been a considerable interest in using Linux for real-time control sys-
tems, from both academic institutions and industry. The main reason for this raising interest is that
Linux is an open-source project. Its license (i.e. GNU General Public License) allows to access,
modify and redistribute (even sell) the software as long as the recipient can exercise the same rights
(access to the source code included). This way, a company is not tied to the OS provider anymore,
and is free of accessing and modifying the OS at will. The open-source license also helped the
growth of a large community of developers who continuously add new features and port Linux to
new architectures. Nowadays, there is a huge amount of programs, libraries and tools available as
open-source code that can be used to build a customized version of the OS. Another reason for this
interest is the very large amount of hardware platforms and peripherals already supported by Linux.
Therefore, using a Linux-based OS can likely reduce the total cost of a project (i.e. development,
maintainance and licensing) with respect to a commercial real-time operating system (RTOS).

Unfortunately, the standard mainline Linux kernel is not adequate to be used in an RTOS, because
it has been designed to be a general-purpose operating system kernel. Hence, the main design goal
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has concerned the optimization of the average throughput (i.e. the amount of ‘useful work’ per-
formed by the system in the unit of time) instead of meeting the timing constraints of each running
application. As a result, the standard Linux kernel does not provide good real-time performance (i.e.
low kernel latencies) or other features needed for supporting real-time applications (for example,
advanced scheduling / resource management algorithms).

In this paper, we describe a real-time scheduler for the CPU that we have recently included in
Linux. The paper is organized as follows. In Section 2, we present the previous work about real-time
on Linux. In Section 3, we describe the scheduling algorithm, the implementation details as well as
the API offered to the programmer. Then, in Section 4, we provide some experimental results on a
real hardware. Finally, in Section 5, we state our conclusions and we provide information about the
future work.

2. RELATED WORK

In the last decade, several (sometimes orthogonal) mechanisms have been proposed to add real-time
capabilities to the Linux kernel. These mechanisms can be grouped in the following classes [1].

Hardware Abstraction Layers (HALs). The first technique consists on reducing the kernel latency
through a small abstraction layer (also called hypervisor), which virtualizes the hardware exposed
to the Linux kernel [2]. This layer takes full control of the hardware resources (mainly, inter-
rupts and system timers) and directly handles the real-time tasks at a higher priority than Linux.
The Linux kernel is thus scheduled by the HAL as a low-priority task. The real-time applica-
tions cannot use functionalities provided by the Linux kernel, unless by temporarily loosing their
real-time guarantees.

This approach, originally introduced by Finite State Machine Labs with real-time Linux
(RTLinux) [3], then acquired by Wind River [4], is now provided by two community-driven
projects. The Real-Time Application Interface (RTAI) project [5], started in 1997, has developed
the Adeos kernel [6] as a replacement for the RTLinux core. RTAI has excellent latencies on the
x86 architecture, but the support for other architectures is limited. Xenomai [7] — a fork of the RTAI
project — relies on the Adeos core as well and supports a larger amount of embedded platforms, but
it offers slightly less performance than RTAI [8].

Better pre-emption and interrupt handling strategies. The second technique consists on reducing
the Linux kernel latencies by improving the strategies for pre-emption and interrupt handling. Ingo
Molnar and Andrew Morton proposed the Low Latency Patch [9] to introduce explicit preemption
points in specific blocks of code that may execute for long intervals of time. Robert Love proposed a
different approach with Montavista’s Preemptible Kernel Patch [10], making the kernel pre-emptible
like the user-space. This patch, accepted into the mainline Linux kernel since version 2.6, allows a
context switch even when another process is running in kernel context. Hence, it becomes possible
to pre-empt a process at any point, as long as the kernel is in a consistent state (i.e. no lock is held).
A comparison of the performance of the two patches has been provided by Clark Williams [11].

PREEMPT_RT [12, 13] is an open-source patch developed by the same developers of the main-
line kernel (e.g. Steven Rostedt, Ingo Molnar, etc.). The patch introduces a set of orthogonal
mechanisms to reduce kernel latency and make the kernel more deterministic. Some of these mech-
anisms (e.g. high resolution timers and priority inheritance) have been already merged into the
mainline kernel. Among the mechanisms not yet merged, there are the re-implementation of spin-
locks as rtmutexes (further reducing the parts of kernel code that cannot be pre-empted) and threaded
interrupts (converting interrupt handlers into pre-emptible kernel threads with a tunable priority).
PREEMPT_RT is widely used to create real-time versions of Linux. For example, RTDroid [14] is
a recent project aiming at creating a real-time version of Android by patching the underlying Linux
kernel with PREEMPT_RT. The real-time scheduler that we present in this paper can coexist with
PREEMPT_RT and thus can help in further improving the real-time performance of projects like
RTDroid.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
DOI: 10.1002/spe



DEADLINE SCHEDULING IN THE LINUX KERNEL

Scheduling and resource management algorithms. Several projects in the last decade have proposed
real-time algorithms for the management of hardware resources in Linux. Well-known examples are
Budget Fair Queueing (BFQ) [15] and BFQ+ [16] for disk operations (both merged into the mainline
kernel) and Quick Fair Queueing [17] for the network. However, the major interest has traditionally
been focused on the CPU, being the primary hardware resource.

Traditionally, Linux has offered simple POSIX-compliant real-time fixed-priority policies (i.e.
SCHED_FIFO and SCHED_RR) that execute the highest-priority ready task until it explicitly
blocks. Indeed, fixed-priority scheduling is an effective solution for executing tasks in embedded
RTOSs, where the number of tasks is very small and the behaviour of each real-time task is perfectly
known. Unfortunately, these policies are not optimal for real-time scheduling in General-Purpose
Operating Systems (GPOSs) like Linux. The first reason is the missing isolation between the run-
ning tasks [18]. For example, if a regular non-privileged user is enabled to access the scheduling
facilities, then he can starve the rest of the system by rising his task to the highest priority. Starva-
tion, however, can also occur when the actual execution time of a high-priority task is longer than
expected. The second reason is related to the interface provided by fixed-priority, which is not ori-
ented to the application requirements. The timing requirements of the application, in fact, cannot
be directly expressed, and must be translated into scheduling priorities, taking into account all tasks
running in the system. In a GPOS, this means that whenever a new real-time task is created, the
priorities of all other tasks must be checked and potentially reordered.

Additionally, the Linux kernel provides the control groups (‘cgroups’) mechanism to limit the
amount of CPU time consumed by a SCHED_FIFO or SCHED_RR task. This mechanism is im-
plemented using an algorithm similar to the deferrable server [19], which can generate scheduling
anomalies when the tasks block and wake-up dynamically. For example, if a task is not ready for
execution at the beginning of its scheduling period, then another task with a lower priority may expe-
rience a deadline miss when the higher-priority task will become ready again (the interested reader
can refer to the simple example shown in Figure 2 of [18] — the example in that figure is based on
an earliest deadline first (EDF) scheduler, but similar effects can happen using fixed priorities too).
Because this kind of anomalies can happen even if the taskset is schedulable according to response
time analysis [20] (or similar kinds of schedulability analysis), providing real-time guarantees to
tasks scheduled by fixed-priorities with control groups in a dynamic scenario can be very difficult.

The scheduling policies of a real-time GPOS, instead, should provide full temporal isolation be-
tween the running tasks. This means that the worst-case temporal behaviour of a task (for example,
measured by its worst-case response time) should not be affected by the behaviour of the other tasks
running on the system. This way, if a task misbehaves trying to use a resource for a time longer than
expected, it is stopped (or its priority is decreased) and cannot affect the real-time performance of
the other tasks running in the system.

Moreover, the scheduling algorithm should expose a natural interface for expressing the applica-
tion requirements in terms of timing constraints.

Resource Reservation is an effective way for providing temporal isolation in GPOSs. The first
example of this technique has been the Capacity Reserve algorithm proposed by Mercer and Tokuda
[21]. Then, several algorithms have been proposed in the literature. Notable examples are Constant
Bandwidth Server (CBS) [22], Greedy Reclamation of Unused Bandwidth (GRUB) [23], HGRUB
[24] and Idle-time Reclaiming Improved Server (IRIS) [25].

The Linux/RK project [26] was one of the first attempts of introducing Resource Reservation
techniques in the Linux kernel, by adding both CPU (with fixed-priority scheduling) and disk (with
EDF scheduling [27]) reservations. Unfortunately, the project has not been maintained throughout
the course of the years, also because of the drastic changes made to the Linux kernel at the 2.4 and
2.6 releases.

To overcome the limitations of the existing Linux scheduler, Faggioli ef al. proposed an imple-
mentation of the POSIX SCHED_SPORADIC real-time policy [28]. The scheduler was developed
with the aim of being integrated into the mainstream kernel, by proposing a very limited set of
modifications to the standard scheduler. The policy provided temporal isolation, and the imple-
mentation was integrated with the existing user-space cgroups interface [29]. The advantage of the
scheduler was the semantics already standardized by POSIX. However, it still suffered the typical
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limitations of priority-based policies (i.e. API not oriented to timing requirements) [30]. Unfortu-
nately, the patch did not receive enough interest from the kernel community, so its development was
discontinued several years ago.

A real-time scheduler based on Resource Reservation for Linux was originally developed at
Real-Time Systems Laboratory (ReTiS Lab) within the Open Components for Embedded Real-time
Applications (OCERA) European project [18, 31]. Because the Linux kernel 2.4.18 did not yet pro-
vide a modular scheduling framework, the scheduler was developed as a loadable kernel module.
A small patch for the Linux kernel exported the necessary symbols and the relevant events to the
real-time scheduler. In practice, the standard Linux scheduler acted as a dispatcher for the external
real-time scheduler. The original work implemented the CBS algorithm [22]. Next works imple-
mented more advanced algorithms [32]. The original scheduler was then ported to kernel 2.6 through
the Adaptive Quality of Service Architecture project [33], adding a user-level library for feedback
scheduling. These projects always remained at a prototype level. The major drawbacks were the
lack of multi-core support and the difficulty of porting to different kernel versions. However, these
attempts allowed to investigate the advantages of a resource reservation scheduler in Linux.

The Linux Testbed for Multiprocessor Scheduling in Real-Time System (LITMUSET) [34] is a
project originally born at the University of North Carolina, now developed at Max Planck Institute
for Software Systems, to provide an experimental platform for real-time systems. The research is
particularly focused on multiprocessor scheduling and synchronization. Like OCERA, the project
relies on a real-time extension of the Linux kernel, which simplifies the prototyping of scheduling
algorithms. The project has allowed investigating the behaviour and the performance of various
scheduling algorithms in the Linux kernel (e.g. partitioned versus global scheduling policies [35]).
However, currently, there are no plans to turn it into a production-quality system.

The ExSched project [36] went a step further by proposing a scheduling framework that does not
need any modification to the Linux kernel. The core component is still a kernel module, which only
depends on a few kernel primitives and communicates with user-level through a proper entry in the
dev filesystem. The framework aims at being cross-platform and is also available for the VxWorks
OS. Some experimental results showed that ExSched is less efficient than our scheduler, with more
than 180% of overhead for low system loads [36].

Specific resource reservation scheduling policies for Linux have been developed also by Libenzi
(with SCHED_SOFTRR [37]) and by Kolivas (with SCHED_ISO [38]). These policies allow non-
privileged users to run tasks at real-time priority up to a maximum processor usage. Thus, it
becomes possible to provide deterministic latencies to time-sensitive applications, still ensuring
system stability and fairness.

More recently, Checconi et al. proposed real-time throttling [39]. The Interactive Realtime Multi-
media Applications on Service Orientated Infrastructures scheduler is based on a direct modification
of the POSIX real-time scheduling class and, in particular, to the throttling mechanism already ex-
isting. This mechanism has been enhanced to provide groups of real-time tasks not just a limit but
also precise scheduling guarantees (in terms of a guaranteed runtime every period, on each of the
available CPUs). The modification of the POSIX scheduler has been designed from scratch with
Symmetric Multi-Processing (SMP) support in mind, and it implements a hierarchical scheduling
policy based on both deadlines and priorities — that is, fixed-priority scheduling is nested inside
EDF scheduling.

Although very valuable, all these projects have not been able to gain enough consensus and trac-
tion for being merged into the mainline kernel. However, part of the experience obtained during
their development has been used in the development of the real-time scheduler SCHED_DEADLINE,
which has been recently merged in the Linux kernel. It is important to highlight that, unlike some
of the projects that we have mentioned, SCHED_DEADLINE is not a scheduling framework, but it
is the implementation of a specific scheduling algorithm that will be described in the next sections.
Of course, such implementation can be modified to implement different algorithms — for exam-
ple, including CPU reclaiming [23, 40]. However, the comparison of the scheduling algorithm (i.e.
CBS) with other algorithms is out of the scope of the paper, which aims at describing the algorithm
accepted in the Linux kernel.
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3. SCHED_DEADLINE

Since the release of 2.6.23, Linux has a modular scheduling framework that can be easily extended
with additional policies. It has been implemented by Molnar as a replacement of the previous O(1)
scheduler. It consists of a main schedule () function and a set of scheduling classes, each encap-
sulating a specific scheduling policy. The binding between each policy and the related scheduler is
done through a set of hooks (i.e. function pointers) provided by each scheduling class and called by
the core scheduler.

SCHED_DEADLINE originally was born within the context of the ACTORS project, financially
supported by the European Commission under the FP7 framework. ACTORS combined virtual-
ization, feedback control and a data-flow programming model for realizing a high-performance
infrastructure for adaptable resource management in embedded devices. The reference platform was
a Linux-based multi-core ARM chip. Within this project, the partner Evidence Sl was in charge
of the development of a real-time CPU scheduler at kernel level. The scheduler has been created in
collaboration with the ReTiS Lab (which already had a wide experience in development of real-time
schedulers for Linux).

Rather than making ad hoc changes to the Linux scheduling core (which has been proven to
offer a lower overhead [41]), Evidence Srl created an additional in-kernel scheduling class to ease
the acceptance of the scheduler into the official Linux kernel. The project, in fact, aimed at the
ambitious goal of creating a real-time scheduler available by default on all Linux distributions. Thus,
SCHED_DEADLINE sits on top of the Linux modular scheduling framework, without changing the
behaviour of already existing scheduling policies (i.e. best-effort and fixed-priority). Figure 1 shows
the set of scheduling policies now available on Linux. The counterpart is that SCHED_DEADLINE
automatically inherited the performance and the latencies of the Linux scheduling framework.

The first version of the scheduler was presented to the Linux community in 2009 with the name
of SCHED_EDF [42, 43]. The name was then changed to SCHED_DEADLINE after the request of
the kernel community [44]. During the course of the years, the scheduler has been maintained and
periodically submitted through the Linux kernel mailing list. As the popularity of the scheduler in-
creased, a higher number of kernel developers provided their own contribution. Each release aligned
the code to the latest version of the kernel and took into account the comments received at the previ-
ous submission. From a release to another, in fact, some features were added or removed, according
to the requests of the kernel community. In particular — besides the change of the scheduler name —
the kernel community asked the following changes:

Implementation of the deadline inheritance protocol [45] for both mutexes and futexes;
Implementation of task migration through the common push & pull kernel mechanism;
Removal of the whole cgroups interface [29];

Removal of bandwidth reclaiming (which, based on a particular flag, scheduled the task at a
lower priority once the budget was exhausted).

Another sensitive topic subject of discussion has been the behaviour in case of fork. The initial
design let this system call succeed by creating another process with SCHED_DEADLINE policy and

'SCHED_DEADLINE SCHED_RR SCHED_FIFO CHED_OTHER SCHED_IDLE
tasks tasks tasks tasks tasks

sched/deadline.c ‘ sched/rt.c ‘ sched/fair.c

Linux Modular Scheduling Framework

@ Ilﬂ Relative priority among the scheduling classes > @

Figure 1. Linux modular scheduling framework.
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budget equal to 0. The kernel maintainers, instead, asked to be more conservative by making the
fork system call fail for any SCHED_DEADLINE process.

Finally, after more than 4 years and the submission of nine releases, the patch has been accepted
and merged into the Linux kernel 3.14. We will now describe the internal design and the API of the
version that has been accepted.

3.1. Scheduling algorithm

SCHED_DEADLINE provides a scheduling policy suitable for real-time applications by implement-
ing a resource reservation algorithm* in the Linux kernel. This algorithm, named CBS, implements
resource reservations over an EDF scheduler [27]. Resource Reservations [21] are an effective tech-
nique for providing temporal isolation, which allows to use real-time scheduling even in GPOSs.
The basic idea is to assign each real-time task a ‘reservation’ (Q;, T;), meaning that the task is guar-
anteed to execute for a ‘maximum runtime’ Q;* every period of time 7;. The goal of the scheduler
is to schedule the tasks in such a way that each task receives the guaranteed CPU time (the runtime)
Q; in every period T;. Then, if Q; and T; are properly sized, the timing constraints of the task are
respected. If a task tries to execute for more than Q; in a period 7;, then the scheduler throttles it
(avoiding to select it from execution) until the end of the current reservation period. In this way,
each task is constrained to not use more than its reserved share — that is, a maximum of Q; every T;
units of time.

As mentioned, CBS [22] is a well-known algorithm implementing CPU Reservations. It belongs
to the class of aperiodic servers with dynamic priorities, deriving inspiration from the service mech-
anisms proposed in the Dynamic Sporadic Server [46, 47] and the Total Bandwidth Server [48]. In
particular, it uses dynamic priorities to correctly cope with dynamic aperiodic arrivals.

For each task, the scheduler keeps track of two additional state variables: the remaining runtime
q; (which represents the amount of remaining processor time that the task can use in the current
reservation period of size T;1) and a scheduling deadline d;, which is used to assign a dynamic
priority to the task. When the CBS starts handling a task, ¢; and d; are initialized to 0.

The CBS algorithm works as follows. When a task wakes up at time ¢, the scheduler checks if
the current scheduling deadline d; can be used (if ¢; < (d; —t) Tl ), otherwise a new scheduling
deadline d; = t + T; is generated and the remaining runtime ¢; is recharged to Q;. While a task
executes, its remaining runtime is decreased as dg; = —d (this is often known as the accounting
rule). When the remaining runtime reaches 0 (g; = 0), the task is throttled" and cannot be selected
by the scheduler for execution (this is often known as the enforcement rule, because it forces the
task to not consume more than Q; time units in a period 7;). The task exits the throttled state only
at time ¢t = d;, when the runtime is recharged to its maximum value (¢; = Q;) and the scheduling
deadline is postponed (d; = d; + T;), decreasing the task’s priority.

Notice that the CBS algorithm adds an additional task state (the throttled state, indicating that
the task already consumed all of its runtime for the current period) to the three task states used
by traditional schedulers (the ready state, indicating that a task is in the ready queue and can be
selected for execution by the scheduler; the running state, indicating that a task has been selected
by the scheduler; and the blocked state, indicating that a task is not in the ready queue — and hence
cannot be selected for execution — because it is waiting for some event to happen). The resulting
state transition diagram is shown in Figure 2. The interested reader can refer to the original paper
[22] for an in-depth description of the algorithm.

Once the scheduling deadlines have been assigned, CBS orders the tasks according to the EDF
[27] algorithm (i.e. from the earliest to the latest deadline). If the total utilization Z ZL of the real-
time tasks is smaller than a certain threshold, EDF can provide some service guarantees to the tasks.
For example, on single-core systems (or on multi-core systems using partitioned scheduling) EDF

#More specifically, a CPU reservation algorithm.

$Notice that the Linux ‘runtime’ is often called ‘budget’ in the real-time literature.

INotice that in the original CBS papers, this ‘period’ T is named ‘server period’ to avoid confusions with the task period.
"In real-time literature, the word depleted is often used instead of throttled.
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Figure 2. State transition diagram of the CBS algorithm.

guarantees that a set of n real-time tasks is schedulable (that is to say, every task is guaranteed to
receive Q; time units every 7;) if and only if

(Z %) <1 (1)
i=1 !

This check can be easily obtained through an admission control.

The previously mentioned temporal isolation property derives from these service guarantees.
Notice that the admission test does not consider any interaction between tasks; hence, temporal
isolation is only achieved between independent tasks.

When implemented in the Linux kernel, SCHED_DEADLINE improved the original CBS by al-
lowing to specify a relative deadline D; different from the period 7;: when a task wakes up at time
t and a new scheduling deadline is generated (because g; = (d; — t) T’ ), itissettod; =t + D,
while when the runtime is recharged the scheduling deadline is postponed by T; : di = d;i + T;.
Thus, as illustrated in Section 3.4, the user-level API of SCHED_DEADLINE allows also to set this
additional parameter.

3.2. Multiprocessor scheduling

When dealing with multiprocessor architectures, two different schemes exist for real-time schedul-
ing: global and partitioned scheduling, namely. With global scheduling, all ready tasks are put in
the same data structure and then run on the different cores. With partitioned scheduling, instead, a
different list of ready tasks is maintained for each processor. Both approaches have pros and cons,
and a proper discussion of which is the best scheme is out of the scope of this paper (the interested
reader can refer to a vast literature, e.g. among others, Lelli ez al. [49] and Bastoni et al. [35]).

The way Linux deals with multiprocessor scheduling is often called distributed runqueue: each
processor has its own ready queue — as in partitioning — but tasks can migrate between the different
queues. This way, it is possible to move tasks among the processors without the very high contention
typical of global scheduling. Real-time scheduling policies perform migrations by means of so-
called push and pull operations. A push operation is started by a source CPU when a task becomes
available for execution on its runqueue (e.g. the task wakes up or resumes from the throttled state,
or when a task is pre-empted by a higher-priority one). The operation searches all the runqueues to
select the best one, where the task currently running has the lowest priority among all running tasks,
and a lower priority than the task just activated. A pull operation, instead, is started by a target CPU
when it is about to schedule a task of priority lower than the previously scheduled one (e.g. when a
task is throttled or blocks). This operation scans every runqueue of the system to find a ready but not
running backlogged task with higher priority than all local tasks. It has to be noted that both push
and pull operations operate only on tasks that are not currently scheduled.
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In our scheduler, we have followed the same approach. We have implemented one runqueue
for each processor, using a red-black tree data structure for efficient manipulation. We have also
implemented the logics for migrating tasks among the runqueues. Therefore, SCHED_DEADLINE
supports both partitioned scheduling (using the cpuset facility, see succeeding sections) and global
scheduling (where the scheduler is left free to move tasks across CPUs). In the latter case, the logics
assigns the m available processors to the m earliest deadline tasks. To speed-up push operations,
we implemented a max-heap that keeps track of the deadlines of the currently scheduled tasks on
each CPU, paired by a bitmask used to identify CPUs free of tasks belonging to the new scheduling
policy [50].

The Linux kernel has a facility (named cpuset), which provides a mechanism for creating logical
entities, called ‘cpusets’, that encompass definitions of CPUs and Memory Nodes (for Non-Uniform
Memory Access (NUMA) systems). Cpusets constrain the CPU and memory placement of a task
to only the resources defined within that cpuset. Sets of tasks can be assigned to these cpusets to
constrain the resources that they use (e.g. the CPUs they can run on). The tasks can be moved
from one cpuset to another to utilize other resources defined in those other cpusets. If the system is
configured with cpusets containing single CPUs, when the user assigns a task to a specific cpuset,
the scheduler behaves as a truly partitioned scheme with a very small overhead. The other mean
by which a task can be restricted to execute on a subset of CPUs is called task affinity. Although
Gujarati et al. already studied admission control for Arbitrary Processor Affinities [51], affinity
setting is currently disabled for tasks handled by our scheduler because of the complexity of the
admission control.

3.3. Shared resources

Tasks can access shared resources using mutually exclusive semaphores, often referred to as mu-
texes. The portion of code in a task between a lock and an unlock operation on a mutex is called
critical section. If a task needs to enter a critical section, it may be blocked by the fact that another
task has already locked the corresponding mutex: this latter task is called lock owner or lock holder.
In real-time systems, it is important to compute for how long, in the worst case, a task may remain
blocked on a lock.

A priority inversion happens when a task is blocked by a lower priority task. Without a proper
protocol to control access to critical sections, the duration of the priority inversion may become
too long, or even unbounded; for this reason, the priority inheritance protocol (PIP) [45] has been
proposed as a simple and effective way to reduce priority inversion. According to the PIP, when a
task is blocked on a lock, the lock owner inherits the highest between its priority and the priorities
of the blocked tasks. In this way, it cannot be pre-empted by medium priority tasks, thus reducing
the blocking time.

In our scheduler, we adopted a solution based on the very same idea. Because dynamic deadlines
constitute tasks priorities, when a task blocks on a lock, the lock owner inherits the earliest deadline
between its current deadline and the deadline of the blocked task (this approach is similar to Jansen
et al. [52], that is in turn based on the work by Sha et al. [45]). In addition, if the deadline is inherited
from the blocked task, the lock owner enters a boosted state. While in this state, the enforcement
mechanism is modified: when the runtime is depleted, it is immediately refilled and the deadline is
postponed by one period (notice that the priority of the task decreases, but the task is not throttled).
This behaviour guarantees that tasks waiting for a lock owner to exit a critical section do not ex-
perience additional delays caused by the CBS throttled state (i.e. the interval of time during which
the lock owner is throttled, waiting for a runtime refill). The obvious simplicity of this solution is
however paid back by the possibility that some ‘inconsistencies’ may happen. In fact, because the
lock owner inherits only the deadline of the blocked task, but not its budget, it actually consumes a
budget under an unrelated deadline. Hence, the admission test should be modified to account for the
blocking times caused by this deadline inheritance.

SCHED_DEADLINE currently handles shared resources through deadline inheritance because
this is the simplest possible solution: because merging a complex scheduler in the mainline kernel
is a long process and it is not possible to merge all the features at the same time, it has been decided
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to start by merging the simplest part, introducing new and more advanced features in a second
time. Hence, the more appropriate approach for resource sharing will be merged later. Such a better
approach consists in inheriting both budget and deadline of the blocked task, as in BWI [53]. Hence,
as stated in Section 5, the final goal is merging an existing implementation of the (Multiprocessor)
Bandwidth Inheritance (M-BWI) protocol [54].

3.4. User-level API

As explained, the SCHED_DEADLINE scheduling policy implements the CBS algorithm. The
temporal isolation property provided by CBS can be used for two main reasons:

e Providing timing guarantees to hard or soft real-time tasks: each SCHED_DEADLINE task is
guaranteed to receive the specified share of CPU time, regardless of the behaviour of the other
tasks running on the system; these guarantees are important for time-sensitive applications (e.g.
real-time control) that need to execute a certain amount of work within a timing constraint.

e Enforcing timing confinement: the task is forced to use no more than its assigned CPU share;
this is useful to limit the amount of CPU used by high-priority tasks which, in case of bug
or intensive computation, may starve the rest of the system. It is also useful in virtualization
environments, for a fair allocation of the CPU among several virtual machines.

In the former case, the important property is temporal isolation from the other tasks, for the benefit
of the task itself. In the latter case, instead, it is an isolation for the benefit of the other tasks. Again,
notice that temporal isolation holds only for independent tasks; hence, when there are significant
interactions between tasks (frequent invocation of ‘heavy’ system calls, shared resources, message
passing, etc...) temporal confinement and timing guarantees might be compromised. When the BWI
algorithm will be merged in SCHED_DEADLINE, these interferences will be limited within groups
of interacting tasks.

We now describe the Application Programming Interface (API) provided to application develop-
ers. The existing system calls sched_setscheduler () and sched_getscheduler () have
not been extended, because of the binary compatibility issues that modifying the sched param
data structure would have raised for existing applications. Therefore, two new system calls called
sched setattr () and sched getattr () have been introduced. These syscalls also sup-
port the other existing scheduling policies — that is, the interpretation of the arguments depends on
the selected policy. Therefore, they are expected to replace the previous system calls (which will be
left to not break existing applications).

The prototype of these new system calls is shown in the following table:

#include <sched.h>

struct sched attr ({
u32 size;
u32 sched policy;
u64 sched flags;

/+ SCHED OTHER, SCHED BATCH «/
s32 sched nice;

/+ SCHED FIFO, SCHED RR «/
u32 sched priority;

/+ SCHED DEADLINE x/
u64 sched runtime;
u64 sched deadline;
u64 sched period;

int sched setattr(pid t pid,
const struct sched attr =xattr,
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unsigned int flags) ;

int sched getattr(pid t pid,
const struct sched attr =xattr,
unsigned int size,
unsigned int flags);

4. EXPERIMENTAL RESULTS

In this section, we show some significant results obtained running a set of experiments on a PC based
on an Intel Xeon L5640 CPU running at 2.26 GHz consisting of six cores and a 12 MB of cache.

4.1. Greedy tasks

As first experiment, we have used SCHED_DEADLINE to schedule one periodic task and two greedy
tasks (i.e. tasks that never block and try to use the CPU at 100%). The periodic task executes for
1 ms every 4 ms. The greedy tasks have been assigned (1 ms, 6 ms) and (1 ms, 10 ms) reservations,
respectively.

Figure 3 shows a segment of the schedule. The periodic task has the most strict timing require-
ments (relative deadline is 4 ms), therefore it always gets scheduled when it wakes up. Greedy 1 has
higher priority than Greedy 2, and thus it pre-empts the latter during the first activation (remember
that priorities are dynamic, the behaviour is thus relative to this particular timing window). Another
thing to notice is that greedy tasks are throttled once they try to execute for more than the allowed
runtime (red lines in the figure). The periodic task, instead, always blocks before exhausting its
runtime per period, and thus it is never throttled.

This experiment shows that SCHED_DEADLINE is capable of providing timing confinement: it
creates an effective isolation between the running tasks, so that greedy, buggy or misbehaving tasks
cannot affect the execution of the other running tasks.

4.2. Synthetic real-time workloads

The next set of experiments has been designed to test the timing guarantees provided by
SCHED_DEADLINE to real-time tasks, showing how SCHED_DEADLINE allows to properly sched-
ule real-time applications. In these experiments, some sets of periodic real-time tasks have been
randomly generated with taskgen [55] and executed by a user-level application (named rt-app
[56]) either under the SCHED_DEADLINE, the SCHED_OTHER (i.e. Completely Fair Scheduler
(CFES)), or the SCHED_FIFO (with proper priority assignments) scheduling policies. The number of
missed deadlines has been measured as a function of the load U = %, where C; is the execution
time of the i” task and P; is its activation period.

This experiment has been performed considering both partitioned scheduling and global schedul-
ing. When using SCHED_DEADLINE, each task t; has been assigned a runtime Q; slightly
larger than its execution time C;, and a server period 7; equal to the task period P;; when using

| | |

Greedy 1 || [ = = |
Il | |

Greedy 2 || = ||

periodic | — = o —
l
Figure 3. SCHED_DEADLINE serving a periodic task and two CPU hungry (greedy) tasks.
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SCHED_FIFO, priorities have been assigned using Rate Monotonic (RM) [27] in case of partitioned
scheduling and DkC [57] in case of global scheduling.

In the partitioned scheduling case, tasks were statically bound to a CPU core (using the Linux
cpuset mechanism), and the load on each core increased from 0.6 (60%) to 0.9 (90%). Notice that
the U = 1 case (i.e. 100% CPU utilization) has been avoided in order to leave some spare time for
the other tasks running in the system, so that the OS is not starved by SCHED_DEADLINE tasks.
For each CPU load, 50 tasksets were randomly generated.

Table I shows the percentage of deadlines missed by each scheduling policy. For
SCHED_DEADLINE, we used partitioned scheduling; for SCHED_FIFO, we used RM priority as-
signment. As it can be noticed, SCHED_DEADLINE is able to avoid any missed deadline (because
the load on each core is smaller than 1, and because the scheduling parameters have been assigned
in order to exploit the so-called hard schedulability property of the CBS). On the other hand, CFS
performs pretty well, but is not able to avoid deadline misses (as it can be expected from a non
real-time scheduling policy), while SCHED_FIFO avoids missed deadlines only for U < 0.8.

This experiment shows that if the taskset can be partitioned between the available cores (with
a per-core load U < 1), then SCHED_DEADLINE is suitable for scheduling hard real-time tasks.
SCHED_FIFO, on the other hand, can only handle tasksets with a smaller per-core load. It is also
worth noticing that when using only CPU-intensive tasks (as in the previous experiments) the results
obtained using SCHED_DEADLINE match the expectations from the real-time scheduling theory.
Notice, however, that resource sharing (Section 3.3), I/O intensive tasks, or frequent invocation
of system calls [58] can cause noticeable blocking times that affect the timing guarantees. Such
blocking times must have an upper bound (e.g. using a proper resource sharing protocol as explained
in Section 3.3 and a proper real-time kernel [12, 13]) and must be properly accounted for in the
admission tests.

After testing partitioned scheduling, the experiment has been repeated by configuring
SCHED_DEADLINE to do global EDF scheduling. In this case, the Linux cpuset mechanism has
not been used so that tasks have been left free of migrating among all available CPU cores. First,
some experiments have been performed using four of the six cores provided by the Xeon CPU, gen-
erating the tasksets with a total utilization ranging from U = 3.4(340%) to U = 3.9(390%). Again,
the U = 4 case has not been considered in order to avoid starving the system. As for the previous
experiment, 50 taskset per CPU load have been randomly generated.

Table II shows the percentage of deadlines missed by each scheduling policy. For
SCHED_DEADLINE, we used global scheduling; for SCHED_FIFO, we used DKC priority assign-
ment. In case of global scheduling, EDF is not able to guarantee that no deadline will be missed, thus

Table I. Percentage of missed deadlines for partitioned scheduling, as a function
of the load U.

U(%) SCHED_DEADLINE (%) SCHED_FIFO (%) SCHED_OTHER (%)

60 0 0 0.58
70 0 0 1.87
80 0 0.003 6.03
90 0 0.38 10.20

Table II. Percentage of missed deadlines for global scheduling on four cores, as
a function of the load U .

U(%) SCHED_DEADLINE (%) SCHED_FIFO (%) SCHED_OTHER (%)

340 0.008 0.010 3.75
350 0.012 0.436 6.17
360 0.030 0.095 6.92
370 0.117 0.231 8.52
380 0.186 0.702 10.62
390 0.615 2.297 14.15
Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
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Table III. Percentage of missed deadlines for global scheduling on six cores, as
a function of the load U .

U(%) SCHED_DEADLINE (%) SCHED_FIFO (%) SCHED_OTHER (%)

500 0.027 0.001 3.303
510 0.023 0.002 4.310
520 0.051 0.011 4.992
530 0.099 0.023 6.046
540 0.138 0.230 7.093
550 0.239 0.271 8.097
560 0.289 0.380 9.977
570 0.351 0.640 11.554
580 0.618 1.380 15.384
590 1.295 2.535 19.774

SCHED_DEADLINE experiences some missed deadlines. The other schedulers, however, exhibit a
higher percentage of missed deadlines (for large utilizations, the percentage of deadlines missed by
DKC or CFS is more than twice the percentage experienced by the CBS).

Some additional experiments with global scheduling have been performed using all of the six
cores of the Xeon CPU, and a CPU load ranging from U = 5 to U = 5.9. The results are pre-
sented in Table III, and show that in this case, SCHED_DEADLINE misses more deadlines than
SCHED_FIFO (with DkC priorities) until the CPU load reaches U = 5.4. Then, for higher values
of the CPU load, the dynamic priorities used by EDF provide better results than static priorities.
This behaviour is because of the fact that SCHED_DEADLINE uses global EDF, without consider-
ing the task runtime when assigning dynamic priorities, while the DkC priority assignment is based
on both periods and execution times (and it is well known that tasks with a high utilization are prob-
lematic for global scheduling algorithms, so their priority has to be increased). Again, as expected,
CFS does not provide good real-time priorities.

Summing up, the experiments show that on multiprocessor (or multi-core) systems where the
taskset cannot be statically partitioned between CPUs/cores and global scheduling must be used,
SCHED_DEADLINE allows to reduce the number of missed deadlines when the CPU load is high,
improving the performance of soft real-time tasks. Also, note that it has been proven that the global
EDF algorithm (used by SCHED_DEADLINE in case of non-partitioned scheduling) always provide
a bounded tardiness [59].

4.3. SCHED_DEADLINE on a real application

After showing how SCHED_DEADLINE helps in respecting the timing constraints of real-time tasks
using some randomly generated synthetic workloads, the effectiveness of the new scheduling pol-
icy has been tested on a real application, showing how SCHED_DEADLINE allows to provide a
reasonable quality to the application while controlling the amount of CPU time consumed by it. In
particular, we have performed a set of tests using MPlayer™", a simple yet widely used and powerful
video player. Being single-threaded, it can be easily scheduled through a single reservation.

MPlayer has been modified to measure some important quality of service metrics when repro-
ducing a video: the Inter-Frame Time (IFT) — defined as the difference between the display time
of the current and the previous frame — and the Audio / Video desynchronisation (A/V Desynch) —
defined as the difference between the Presentation TimeStamp (PTS) of the currently reproduced
audio sample and the PTS of the currently reproduced video frame. Variations in the IFT can have
a bad impact on the perceived video quality, because the video does not play smoothly, while large
values of the A/V Desynch affect the quality of the reproduced media because audio and video do
not appear synchronised (e.g. lip sync).

MPlayer has then been used to play an HD movie (with H.264 video and AAC+ audio), and
scheduled by using SCHED_DEADLINE with a period equal to the expected IFT (1 / fps) and a

“*http://www.mplayerhq.hu.
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runtime (maximum budged) ranging from 5 ms to 20 ms. Because the video frame rate is 23.976 fps,
the expected IFT is 1000000/23.976 = 41708us . As expected, if the runtime was large enough,
the IFT was stable around the expected value of 41708 us. Decreasing the maximum budged, some
jitter started to be visible in the IFT. Finally, for small values of Q;, the IFT was out of control.
Figure 4 shows the IFT measured for the first 600 frames with a value of the maximum runtime near
to the one needed to decode without issues (Q; = 10 ms) and a smaller value, which created issues
and a non fluid playback (Q; = Tms).

Notice that a constant IFT near to the expected value can also be obtained by using SCHED_FIFO
with a high real-time priority. However, SCHED_FIFO does not allow to control the percentage of
CPU time consumed by MPlayer, while SCHED_DEADLINE allows to find a trade-off between the
consumed CPU time and the perceived quality. For example, Figure 5 shows the impact of different
Q; values on the IFTs by plotting their Cumulative Distribution Function (CDF). Notice how in-
creasing Q; allows to make the CDF more similar to a step function (indicating that MPlayer has a
probability near to 1 to play the video always at the correct rate), at the cost of dedicating more CPU
time to MPlayer’s execution. On the other hand, when scheduling MPlayer with SCHED_FIFO, the
IFT CDF looked similar to the one obtained with Q; = 13ms, but the CPU utilization of the task
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Figure 4. Inter-frame times for MPlayer scheduled with different SCHED_DEADLINE parameters.
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Figure 5. Cumulative distribution function (CDF) of the MPlayer’s inter-frame times for different values of
the SCHED_DEADLINE maximum runtime.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2015)
DOI: 10.1002/spe



J.LELLI ET AL.

09

0.8

0.7

0.6

0.5

CDF

04

03

0.2

0.1

{

0 . n n n n H
Om 20000 40000 60000 80000 100000 120000 140000 160000

Inter-Frame Time (us)

Figure 6. Cumulative distribution function (CDF) of the MPlayer’s inter-frame times when SCHED_OTHER
is used. CFS, completely fair scheduler.

ranged (according to the pidstat utility) from 5% to more than 35% and it was not possible to
control it.

When, instead, MPlayer is scheduled with SCHED_OTHER (using the CFS — Completely Fair
Scheduling — algorithm) the IFT CDF turned out to be highly dependent on the system load: with
an unloaded system, the IFT CDF was similar to the one obtained with SCHED_FIFO (i.e. good
performance); however, when some CPU-intensive activities were started in background, then the
IFT CDF became much worse. For example, Figure 6 shows the IFT CDF obtained on a six-core
CPU when running six instances of £fmpeg in background to transcode some videos. Obviously,
when using SCHED_DEADLINE, MPlayer is not affected by the £fmpeg’s instances running in
background (two of the CDFs obtained with SCHED_DEADLINE are also reported for comparison).
The fact that CFS performs quite well in underload situations, but it does not perform as well as
EDF-based scheduling for high loads, is well known in literature [60]. The CFS niceness parame-
ter can be tuned to stabilise the IFTs when using SCHED_OTHER. However, this approach is far
from providing the same amount of control of the SCHED_DEADLINE’s runtime and period pa-
rameters. These parameters, in fact, allow to exactly set the percentage of execution time consumed
by MPlayer, allowing to find better trade-offs between the quality of the video and the throughput
— that is, number of frames transcoded per second — provided by the £fmpeg instances playing
in background.

Summing up, SCHED_DEADLINE allows to both respect the temporal constraints of real appli-
cations (and not only synthetic benchmarks), and to find a proper trade-offs between QoS and CPU
usage, while SCHED_FIFO and SCHED_OTHER do not allow to find such trade-offs.

Similarly, to the experiments performed in [40], Figure 7 displays the A/V Desynch experienced
for different values of Q;. The results show again that SCHED_DEADLINE can be effectively used
to control the quality perceived by a user and to guarantee the proper behaviour of time-sensitive
applications. Again, SCHED_OTHER with a small CPU load and SCHED_FIFO result in an A/V
Desynch close to 0. SCHED_OTHER with a high CPU load results in an A/V Desynch compa-
rable with the one obtained with SCHED_DEADLINE and a runtime of 9ms; playing with the
niceness parameter allows to reduce the A/V Desynch, but does not provide as much control as
SCHED_DEADLINE.

Summing up, SCHED_DEADLINE provides a good amount of control over the real-time per-
formance of real applications, because it allows to better specify the applications’ parameters and
requirements: because the user can communicate to the scheduler some temporal constraints to be
respected (in the form of a period 7; and a runtime Q;), the scheduler can do a better job in trying
to respect these constraints.
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Figure 7. Audio/video dsynchronisation (A/V Desynch) time for MPlayer scheduled by SCHED_
DEADLINE with different values of the maximum runtime.

4.4. Using SCHED_DEADLINE to control the application throughput

The previous experiments showed how SCHED_DEADLINE allows to respect the deadlines of
real-time applications and to properly serve ‘legacy’ time-sensitive applications that have not been
specifically designed to be used with SCHED_DEADLINE (controlling the trade-off between their
quality and CPU usage). In other words, these experiments focused on the timing guarantees that
can be provided based on the temporal isolation property of the CBS.

However, the temporal isolation property also allows to enforce timing confinement to control
the throughput of non real-time (or time-sensitive) applications — that is, SCHED_DEADLINE can
be used even in situations where real-time performance is not strictly required. This last set of
experiments has been performed to illustrate this possibility.

The application used in these experiments is Kernel-based virtual machine (KVM) [61], used to
run a Virtual Router (VR) [62]. This VR is implemented by executing a software router (a Linux-
based OS running Quagga’™ as a routing daemon and using the Linux kernel as a data plane) in a
KVM virtual machine. KVM creates a user-space thread (the vCPU thread) for executing the soft-
ware router and uses a kernel thread (the vhost-net kernel thread) to move packets between the
virtualised software router and the physical network cards. Because both of these threads tend to
consume a lot of CPU time (when the rate of packets to be routed is too high), SCHED_DEADLINE
can be used to control their CPU usage, seeing how the fraction of CPU time reserved to these
threads can affect the router performance. Notice that the two threads are not pure ‘CPU-hungry’
tasks (consuming CPU time in user-space without interacting with the kernel), but tend to stress
the kernel very much (invoking a good amount of system calls and kernel functions, causing con-
text switches, and even invoking hypervisor calls) and sometimes behave as self-suspending tasks.
Hence, an additional goal for this experiment is to show that SCHED_DEADLINE can also handle
non-trivial loads composed by self-suspending tasks that stress the kernel.

In this experiment, performed by using VRKit [63], the VR has been fed with small (64
bytes) UDP packets, while scheduling the vCPU thread and the vhost-net kernel thread with
SCHED_DEADLINE and reserving different percentages of CPU time to them (remember that the
percentage of CPU time reserved to a task scheduled by SCHED_DEADLINE with runtime Q; and
period 7; is equal to % in percentage).

Figures 8 and 9 piot the rate of routed packets as a function of Q;/T; (in percentage).
SCHED_DEADLINE has been used to schedule both the vCPU thread and the vhost-net kernel
thread. The experiment has been performed for several input packet rates, but only some interesting
rates have been reported in the figures. The lower line corresponds to an underloaded VR: increasing

T http://www.nongnu.org/quagga.
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Figure 8. Throughput of a KVM-based virtual router as a function of the percentage of CPU time reserved
to the vCPU thread.
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Figure 9. Throughput of a Kernel virtual machine-based virtual router as a function of the percentage of
CPU time reserved to the vhost-net kernel thread.

Q;/T;, the routed packets rate reaches the input rate, and the line becomes flat (i.e. reserving more
CPU time to KVM cannot improve the performance). The medium line corresponds to a system
near to overload. The higher line corresponds to an overloaded VR (i.e. maximum possible input
packet rate): in this case, even when the KVM thread is reserved 95% of the CPU time, the routed
packets rate cannot reach the input rate.

The interesting thing to be noticed is that the VR performance (the routed packets rate) increases
almost linearly with the ratio Q;/T; (fraction of CPU time reserved to the vCPU or vhost-net
thread). This shows that SCHED_DEADLINE allows to easily control the performance (even non
real-time performance) of the applications. The reason is that SCHED_DEADLINE allows to exactly
control the fraction of CPU time used by the vhost-net kernel thread or by the vcpu thread. The
other schedulers offered by Linux do not provide a similar level of control.CFS, for example, allows
to assign a weight to each thread, and to share the CPU time between threads proportionally to such
weights, but cannot guarantee that a thread receives exactly the desired fraction of CPU time (this
would require to avoid all tasks’ migrations, or to recompute proper task weights whenever a task is
migrated). Finally, similar results can be obtained by scheduling the vhost-net kernel thread and the
vepu thread with high real-time priorities, and using the Linux “Traffic Control’ (TC) mechanisms to
limit the VR throughput. However, this technique does not allow to precisely control the fraction of
CPU time consumed by the threads; hence, it is not possible to estimate their interference on other
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tasks. For example, if some real-time tasks are scheduled on the same CPU cores as vhost-net and
vepu, it is not possible to provide real-time guarantees to such threads. Using SCHED_DEADLINE,
instead, this is possible.

5. CONCLUSIONS

In this paper, we presented SCHED_DEADLINE, the real-time scheduler recently merged into the
official Linux kernel. We have described the scheduling paradigm (i.e. Resource Reservation), the
implemented algorithm (i.e. CBS), the internal design and the API available to the software develop-
ers. The experimental results on the real hardware showed that SCHED_DEADLINE can effectively
provide temporal isolation among the running tasks and reduce the number of deadline misses
experienced by the real-time tasks.

The future work will be focused on the following:

e Investigation of more sophisticated Resource Reservation algorithms (e.g. IRIS [25]);

o Investigation of the high overhead shown by SCHED_DEADLINE in some circumstances [41];

e Development of power-aware real-time algorithms (e.g. GRUB-PA [32]) to reduce power
consumption still meeting real-time constraints;

e Development of M-BWI [54] as replacement of deadline inheritance, to solve the issues
described in Section 3.3;

e Access control for not privileged users;

e Bandwidth management through the cgroups interface [29].
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